We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Increased Bleb Formation Characterizes Metastatic Cancer Cells

By LabMedica International staff writers
Posted on 04 Jun 2019
Print article
Image: Left: Images of a blebbing, highly metastatic PC3 prostate cancer cell (top) and a non-blebbing normal RWPE-1 prostate cell being forced into a microfluidic channel. Middle: Outlines of the images on the left highlighting blebbing and cell deformation. Right: Percentage of highly metastatic PC3, moderately metastatic DU145, and normal RWPE-1 cells that bleb while being forced into a channel along with the standard deviation (SD) (Photo courtesy of Fazle Hussain, Texas Tech University).
Image: Left: Images of a blebbing, highly metastatic PC3 prostate cancer cell (top) and a non-blebbing normal RWPE-1 prostate cell being forced into a microfluidic channel. Middle: Outlines of the images on the left highlighting blebbing and cell deformation. Right: Percentage of highly metastatic PC3, moderately metastatic DU145, and normal RWPE-1 cells that bleb while being forced into a channel along with the standard deviation (SD) (Photo courtesy of Fazle Hussain, Texas Tech University).
A recent paper described an inexpensive fluid biopsy device that is able to distinguish highly metastatic prostate cancer cells from moderately metastatic prostate cancer cells and normal cells.

Since most prostate tumor cells that survive current treatment regimens become metastatic, there is an urgent need for new tools to detect metastatic prostate cancer that do not rely on prostate specific antigen (PSA) measurements, which cannot accurately identify cells with metastatic potential.

Plasma membrane blebbing (in which portions of the cell’s outer layer bulges outward from the more rigid inner layer) is known to provide important metastatic capabilities to cancer cells by aiding cell detachment from the primary tumor site and increasing cell deformability to promote cell migration through the extracellular matrix. In fact, highly metastatic prostate cancer cells flowing through a microfluidic channel form 27% more plasma membrane blebs than normal cells and have a lower stiffness (about 50%).

Taking advantage of this property, investigators at Texas Tech University (Lubbock, USA) developed an instrument that measured bleb formation as the device forced cell samples through minute channels less than 10 microns wide. Results obtained by this method revealed that highly metastatic prostate cancer cells exhibited more blebbing than did moderately metastatic or normal cells. Of the highly metastatic cells 56% produced blebs, whereas only 29% of normal cells and 38% of moderately metastatic cells did.

Mechanistically, increased blebbing by highly metastatic cells was attributed to low levels of the protein F-actin, which resulted in a reduced number of binding sites for proteins that normally anchor the cell’s plasma membrane to the inner cortex.

“This is a potentially significant finding which may provide simple and inexpensive diagnostic methods for detecting early and advanced cancer, particularly metastatic cancer,” said senior author Dr. Fazle Hussain, professor of mechanical engineering at Texas Tech University.

The fluid biopsy device for detection of highly metastatic prostate cancer cells was described in the May 21, 2019, online edition of the journal Biomicrofluidics.

Related Links:
Texas Tech University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.