We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New Cholesterol Calculation May Avoid Fasting

By LabMedica International staff writers
Posted on 23 Jan 2018
Print article
Image: New accurate cholesterol test may allow patients to pass on fasting (Photo courtesy of Johns Hopkins School of Medicine).
Image: New accurate cholesterol test may allow patients to pass on fasting (Photo courtesy of Johns Hopkins School of Medicine).
In a direct comparison study, scientists have added to evidence that a newer method of calculating low-density lipoprotein-cholesterol levels in the blood is more accurate than the older method in people who did not fast before blood was drawn.

Recent recommendations favoring non-fasting lipid assessment may impact low-density lipoprotein-cholesterol (LDL-C) estimation. The novel method of LDL-C estimation (LDL-CN) uses a flexible approach to derive patient-specific triglyceride (TG) to very low-density lipoprotein-cholesterol ratios.

Blood lipid specialists and their colleagues at Johns Hopkins School of Medicine (Baltimore, MD, USA) used a USA cross-sectional sample of 1,545,634 patients (959,153 fasting ≥10-12 hours; 586,481 non-fasting) from the second harvest of the Very Large Database of Lipids study to assess for the first time the impact of fasting status on novel LDL-C accuracy. Rapid ultracentrifugation was used to directly measure LDL cholesterol content (LDL-CD). Accuracy was defined as the percentage of LDL-CD falling within the novel method of LDL-C estimation (LDL-CN) or the classical Friedewald method (LDL-CF) category by clinical cut-point. For low estimated LDL-C (<70 mg/dL), they evaluated accuracy by TG levels. The magnitude of absolute and percent differences between LDL-CD and estimated LDL-C (LDL-CN or LDL-CF) was stratified by LDL-C and TG categories.

The scientists reported that in both fasting and non-fasting samples, accuracy was higher with the novel method across all clinical LDL-C categories (range: 87-94%) compared to Friedewald estimation (range: 71-93%). Approximately 30% of the non-fasting participants had greater than 10 mg/dL inaccurate cholesterol measurements using the Friedewald method compared with only 3% error from the actual measured value with the new method. The investigators reported that the overall accuracy of LDL calculations decreased as levels of triglycerides increased, particularly when using the Friedewald method. For example, in 6,168 non-fasting participants with high triglycerides between 200 to 399 mg/dL, the accuracy of the calculation among those in the less than 70 mg/dL LDL range was 82% with the new method versus 37% using the Friedewald method.

Seth Shay Martin, MD, MHS, an Assistant Professor of Medicine and senior author of the study, said, “Although the new LDL calculation method is a bit more complex, the beauty is that it can be performed using information that is already collected in the blood sample for the standard lipid profile and automated in the lab’s computer system to give a more accurate result. Since non-fasting samples are now accurate, it’s more convenient for patients because they can come in anytime and don’t need to return for a second appointment if they have eaten.” The study was published on January 2, 2018, in the journal Circulation.

Related Links:
Johns Hopkins School of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.