We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New Fluorescent Sensor Array Lights up Alzheimer’s-Related Proteins for Earlier Detection

By LabMedica International staff writers
Posted on 08 Feb 2024
Print article
Image: Lighting up Alzheimer’s-related proteins allows for earlier disease detection (Photo courtesy of 123RF)
Image: Lighting up Alzheimer’s-related proteins allows for earlier disease detection (Photo courtesy of 123RF)

Many neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, pose a diagnostic challenge in their early stages before symptoms manifest. Identifying disease-related biomarkers like amyloids, which are aggregated proteins, could offer crucial early insights if they can be detected effectively. Now, researchers have developed a new method that employs an array of sensor molecules to illuminate amyloids. This innovation could play a significant role in monitoring disease progression or differentiating various amyloid-related disorders.

In neurodegenerative diseases, a common factor is the disruption of brain communication, often due to “sticky” clumps of misfolded proteins called amyloids that interrupt signal transmission. These amyloids are believed to be integral to Alzheimer’s disease progression, suggesting their potential as early diagnostic markers to broaden treatment possibilities. While radioimaging techniques like positron emission tomography (PET) scans can detect amyloids, they require advanced equipment and generally target only specific amyloids linked to the disease. As an alternative, fluorescence imaging techniques have been investigated for their simpler yet sensitive capability to detect multiple distinct amyloids.

A team of researchers at The University of Sydney (NSW, Australia) set out to develop a fluorescent sensor array specifically for amyloids. This tool aims to monitor Alzheimer’s and other diseases' progression and differentiate atypical amyloids from other naturally occurring amyloid-forming proteins. The team initially combined five coumarin-based molecular probes, each responding with varying fluorescence levels upon encountering amyloids, into an array. They discovered, however, that using just two of these probes, chosen for their strong fluorescence responses, still yielded a highly sensitive detection system and provided a unique fluorescent “fingerprint” for individual amyloids.

The effectiveness of this two-probe array was tested in a simulated biological fluid containing molecules that could potentially disrupt sensing. Nevertheless, the array maintained its high sensitivity and selectivity. Its efficacy was further validated using samples from the brains of mouse models of Alzheimer’s. The researchers noted distinct fluorescence patterns at the early (6 months old) and later (12 months old) stages of the disease. Moreover, the array produced a distinct fluorescence signature for three amyloids typically associated with Alzheimer’s, another disease-related amyloid, and five “functional amyloids” not implicated in the disease. According to the researchers, this tool offers the potential to differentiate between closely related amyloids, paving the way for earlier and more precise diagnosis of amyloid-related diseases.

Related Links:
The University of Sydney

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article
77 ELEKTRONIKA

Channels

Molecular Diagnostics

view channel
Image: Schematic illustration of the SEDphone system workflow (Photo courtesy of ZHU Cancan)

Smartphone-Controlled Microfluidic Device Enables Rapid Influenza Detection

The influenza virus represents a significant public health concern, annually causing epidemics with high morbidity and mortality rates. The virus is known for its high mutation rate and the existence of... Read more

Hematology

view channel
Image: The new Yumizen H550E (autoloader), H500E CT (closed tube), and Yumizen H500E OT (open tube) (Photo courtesy of HORIBA)

New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds

HORIBA (Kyoto, Japan) has expanded its line of compact hematology analyzers by introducing new models that incorporate Erythrocyte Sedimentation Rate (ESR) measurement capabilities. The newly launched... Read more

Pathology

view channel
Image: High-speed brightfield scanners offer excellent image quality to aid pathologists\' review of digital slides (Photo courtesy of Roche)

Whole-Slide Imaging System Enables Pathologists to Diagnose Patients Using Digital Images

Digital pathology involves the digitalization of the traditional pathology workflow, starting from slide scanning to visualization, to analysis. Digital pathology is transforming traditional histopathology... Read more

Industry

view channel
Image: The global urinalysis market is projected to grow at a CAGR of 9.6% to USD 6.8 billion by 2029 (Photo courtesy of Shutterstock)

Global Urinalysis Market Driven by Technological Advancements in POC Testing

Urinalysis is a practical and efficient technique for analyzing urine samples to detect various infections and chronic diseases such as diabetes, urinary tract infections, and kidney disease.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.