We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Events

02 Jun 2025 - 04 Jun 2025
11 Jun 2025 - 13 Jun 2025

Electrochemical Sensors with Next-Generation Coating Advances Precision Diagnostics at POC

By LabMedica International staff writers
Posted on 12 Feb 2024

Current point-of-care (POC) diagnostic technologies are typically limited to measuring a single disease biomarker or several biomarkers from the same class of molecules, such as various RNAs, proteins, or antibodies. More...

However, the ability to measure multiple biomarkers from different molecular classes could provide a more comprehensive understanding of a disease's state, severity, progression, and individual variations in its development. Electrochemical biosensors, which convert the chemical signal of a biomarker found in a small biofluid sample (like blood, saliva, or urine) into an electrical signal proportional to the biomarker's amount, could potentially address many diagnostic challenges at the point of care. These sensors can be assembled into multiplexed arrays to detect different biomarkers, and recent advances have overcome the challenge of “biofouling” – the degradation of electrode surfaces by nonspecific biological molecules in samples – through the development of thin antifouling coatings.

Now, researchers at Wyss Institute at Harvard University (Boston, MA, USA), in collaboration with several institutes in Korea, have significantly advanced electrochemical diagnostic sensing. They have developed a new nanocomposite porous antifouling coating that is one micrometer thick – about 100 times thicker than previous coatings. This increased thickness, coupled with an engineered porous structure, allows for the integration of a higher number of biomarker-detecting probes into the sensors, achieving up to 17 times greater sensitivity than the best existing sensors, while also offering enhanced antifouling properties.

In their proof-of-concept study, the team adapted a previously developed set of detection reagents for three COVID-19-related biomarkers. They used these reagents to pattern a sensor electrode array with their innovative coating technology, including a CRISPR-enabled sensor for SARS-CoV-2 RNA, a sensor for the virus's capsid antigen, and another for a virus-directed host antibody. When tested with patient samples, the new sensor demonstrated 3.75 to 17 times higher detection sensitivities compared to a previous sensor fabricated with the same detection systems but using the team’s thinner, non-porous coating. It also accurately distinguished between positive and negative samples with 100% specificity.

“Our novel thick porous emulsion coating directly addresses critical hurdles that currently prevent the wide-spread use of electrochemical sensors as central components of comprehensive POC diagnostics for many conditions,” said Wyss Founding Director Donald Ingber, M.D., Ph.D. “However, going far beyond that, it could also open up new opportunities for developing safer and more functional implantable devices, and other healthcare monitoring systems at multiple disease fronts. Overcoming biofouling and sensitivity problems are challenges that impact many of these efforts.”

Related Links:
Wyss Institute at Harvard University


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Francisella Tularensis Test
TULAREMIA VIRCLIA IgG+IgM MONOTEST
New
STI Test
REALQUALITY RQ-SevenSTI
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: New biomarkers could someday make it easy to spot Parkinson’s disease in a patient’s blood sample (Photo courtesy of Shutterstock)

Unique Blood-Based Genetic Signature Can Diagnose Parkinson’s Disease

Parkinson's disease is primarily recognized for its impact on the central nervous system. Recent scientific progress has shifted focus to understanding the involvement of the immune system in the onset... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Pathology

view channel
Image: The new tool is designed for accurate detection of structural variations in clinical samples (Photo courtesy of Karen Arnott/EMBL-EBI and Isabel Romero Calvo/EMBL)

ML Algorithm Accurately Identifies Cancer-Specific Structural in Long-Read DNA Sequencing Data

Long-read sequencing technologies are designed to analyze long, continuous stretches of DNA, offering significant potential to enhance researchers' abilities to detect complex genetic changes in cancer genomes.... Read more

Technology

view channel
Image: Concept of biosensor integrated into hygiene pads enabling direct semi-quantitative analysis of biomarkers in unprocessed menstruation blood (Photo courtesy of Dosnon, L et al. DOI: 10.1002/advs.202505170)

First Ever Technology Recognizes Disease Biomarkers Directly in Menstrual Blood in Sanitary Towels

Over 1.8 billion people menstruate worldwide, yet menstrual blood has been largely overlooked in medical practice. This blood contains hundreds of proteins, many of which correlate with their concentration... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.