We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Fruit Fly Study Leads to New Understanding of How mRNA Regulates Gene Expression

By LabMedica International staff writers
Posted on 02 Apr 2014
Print article
A study on heat sensitivity in fruit flies has led to a new understanding of how gene expression is regulated by mRNAs in a fashion that is independent of both DNA and protein.

Investigators at the Washington University School of Medicine (St. Louis, MO, USA) were studying the genetic mechanism that controls the behavior of a mutant variety of Drosophila that was unusually sensitive to high temperatures. These flies carried a mutated copy of a gene called seizure (sei) that rendered them so sensitive to heat that a rise in temperature of even 10 degrees was sufficient to send them into seizures.

"When we looked at the sei gene, we noticed that there is another gene on the opposite strand of the double-stranded DNA molecule called pickpocket 29 (ppk29)," said senior author Dr. Yehuda Ben-Shahar, assistant professor of biology at the Washington University School of Medicine. "This was interesting because sei codes for a protein ‘gate’ that lets potassium ions out of the neuron and pickpocket 29 codes for a gate that lets sodium ions into the neuron."

The investigators generated a series of transgenic lines of Drosophila with different ratios of sei and ppk29. They reported in the March 18, 2014, online edition of the journal eLife that mRNA originating from ppk29 was regulating the mRNA from the sei gene. The regulatory component of ppk29 was identified as the untranslated 3' UTR end of the mRNA strand. When this section of ppk29 mRNA formed a double stranded segment with complementary DNA from sei it resulted in the destruction of the sei strand through the combination of the Dicer enzyme and RISC (RNA-induced silencing complex) assembly. Thus, the gene coding a sodium channel was found to regulate the expression of the potassium channel gene.

“Our findings show that mRNAS, which are typically thought to act solely as the template for protein translation, can also serve as regulatory RNAs, independent of their protein-coding capacity,” said Dr. Ben-Shahar. “They are not just messengers but also actors in their own right.”

Related Links:

Washington University School of Medicine


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest
New
TRAb Immunoassay
Chorus TRAb

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.