We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

By LabMedica International staff writers
Posted on 17 Apr 2025

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease. More...

A significant challenge in manufacturing cell therapy products (CTPs) is ensuring that the cells are free from contamination before being administered to patients. Current sterility testing methods, which rely on microbiological techniques, are time-consuming and can take up to 14 days to detect contamination. This delay poses a risk to critically ill patients who urgently need treatment. Although advanced techniques like rapid microbiological methods (RMMs) can reduce testing time to seven days, they still require complex procedures, such as cell extraction and the use of growth enrichment mediums, and rely heavily on skilled personnel for sample handling, measurement, and analysis. This highlights the need for more efficient methods that provide faster results, meet patient timelines, and involve simple workflows without compromising the quality of the CTPs.

Researchers from the Critical Analytics for Manufacturing Personalized-Medicine (CAMP, Singapore), an interdisciplinary research group of Singapore-MIT Alliance for Research and Technology (SMART), along with collaborators have developed an innovative solution to quickly and automatically detect microbial contamination in CTPs during the manufacturing process. By measuring the ultraviolet (UV) light absorbance of cell culture fluids and employing machine learning to identify light absorption patterns indicative of microbial contamination, this novel testing method aims to reduce sterility testing time, enabling quicker availability of CTP doses for patients. This is especially critical in cases where timely administration of treatments could be life-saving for terminally ill patients.

In a study published in Scientific Reports, the SMART CAMP team explained how they integrated UV absorbance spectroscopy with machine learning to create a method for label-free, non-invasive, and real-time detection of cell contamination in the early stages of CTP production. This new approach has several advantages over traditional sterility tests and RMMs. It eliminates the need for cell staining to identify labeled organisms, thus making the process label-free. Additionally, it bypasses the invasive procedure of cell extraction and provides results in less than 30 minutes. The method offers a quick "yes/no" assessment of contamination, enabling automation of cell culture sampling with a streamlined workflow that requires no extra incubation, growth enrichment mediums, or extensive manpower. Furthermore, the system does not need specialized equipment, making it a cost-effective solution.

“Traditionally, cell therapy manufacturing is labor intensive and subject to operator variability,” said Prof Rajeev Ram, Principal Investigator at SMART CAMP, MIT Professor, and corresponding author of the paper. “By introducing automation and machine learning, we hope to streamline cell therapy manufacturing and reduce the risk of contamination. Specifically, our method supports automated cell culture sampling at designated intervals to check for contamination, which reduces manual tasks such as sample extraction, measurement, and analysis. This enables cell cultures to be monitored continuously and contamination to be detected at early stages.”

Related Links:
CAMP


New
Gold Member
Latex Test
SLE-Latex Test
Serological Pipet Controller
PIPETBOY GENIUS
New
C-Reactive Protein Rapid Test
Afinion CRP
New
Plasmodium Test
Plasmodium DNA Real Time PCR Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The tip optofluidic immunoassay platform enables rapid, multiplexed antibody profiling using only 1 μL of fingertip blood (Photo courtesy of hLife, DOI:10.1016/j.hlife.2025.04.005)

POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood

As new COVID-19 variants continue to emerge and individuals accumulate complex histories of vaccination and infection, there is an urgent need for diagnostic tools that can quickly and accurately assess... Read more

Microbiology

view channel
Image: The LIAISON PLEX® Gram-Positive Blood Culture Assay runs on the on the LIAISON PLEX instrument (Photo courtesy of Diasorin)

Blood Culture Assay Enhances Diagnostic Stewardship Through Targeted Panel Selection

Each year, around 250,000 individuals in the US are diagnosed with bloodstream infections (BSIs). Sepsis caused by these infections carries a mortality rate ranging from 16% to 40%, and any delay in administering... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.