We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Disrupted Micronuclei Cited as Potential Non-Small-Cell Lung Cancer Biomarkers

By LabMedica International staff writers
Posted on 16 Jul 2013
Print article
Cancer researchers have found that collapse of the nuclear membrane that surrounds micronuclei—bits of the genome that become detached during cell replication—may allow these damaged segments of DNA to reenter the cell's genetic material with possible cancer-causing consequences.

Investigators at the Salk Institute for Biological Sciences (La Jolla, CA, USA) worked with cultures of non-small-cell lung cancer (NSCLC) cells. They reported in the July 3, 2013, issue of the journal Cell that micronuclei, which were sometimes generated when these cells replicated, had reduced functioning compared to primary nuclei in the same cell, although the two compartments appeared to be structurally comparable. Over 60% of micronuclei were found to undergo an irreversible loss of compartmentalization during interphase due to collapse of their nuclear envelope.

The disruption of the micronuclei, which was induced by defects in nuclear lamina assembly, drastically reduced nuclear functions and had the potential to trigger massive DNA damage. Disruption of micronuclei was associated with chromatin compaction and invasion of endoplasmic reticulum (ER) tubules into the chromatin.

Disrupted micronuclei were detected in both major subtypes of NSCLC, suggesting that this feature could be a useful objective biomarker for genomic instability in solid tumors.

"Our study shows that more than 60% of micronuclei undergo catastrophic dysfunction in solid tumors such as NSCLC," said senior author Dr. Martin Hetzer, professor of molecular and cell biology at the Salk Institute for Biological Sciences. "We identified disrupted micronuclei in two major subtypes of human non-small-cell lung cancer, which suggests that they could be a valuable tool for cancer diagnosis."

Related Links:
Salk Institute for Biological Sciences


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Unstirred Waterbath
HumAqua 5
New
FOB+Transferrin+Calprotectin+Lactoferrin Test
CerTest FOB+Transferrin+Calprotectin+Lactoferrin Combo Test

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Molecular Diagnostics

view channel
Image: Health Canada has approved SPINEstat, a first-in-class diagnostic blood test for axSpA, as a Class II medical device (Photo courtesy of Augurex)

First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis

Axial spondyloarthritis (axSpA) is a chronic inflammatory autoimmune condition that typically affects individuals during their most productive years, with symptoms often emerging before the age of 45.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.