We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

02 Jun 2025 - 04 Jun 2025
11 Jun 2025 - 13 Jun 2025

AI Method Measures Cancer Severity Using Pathology Reports

By LabMedica International staff writers
Posted on 27 Nov 2024

Researchers often rely on tumor registries, which are databases managed by hospitals and government agencies, to screen cancer patients for clinical trials. More...

These registries require specialized staff to manually assess a patient’s cancer stage by reviewing various documents, including laboratory reports and clinicians’ notes. This process can be time-consuming, and by the time the patient’s information is added to the registry, months may have passed, potentially missing the opportunity for the patient to participate in clinical trials or receive other treatments. Now, researchers have developed and successfully tested an artificial intelligence (AI) method that can significantly reduce this delay, enhancing the pace of research and broadening patient access to clinical trials.

The AI method, developed by a group of investigators led by Cedars-Sinai (Los Angeles, CA, USA), uses pathology reports to automatically classify patients by the severity of their cancers, potentially speeding up the clinical trial selection process. This breakthrough, outlined in the peer-reviewed journal Nature Communications, not only has the potential to streamline the launch of cancer clinical trials but also represents a significant expansion of AI’s role in healthcare. The development of this AI model was made possible by previous research that overcame technical challenges in extracting and analyzing pathologists’ notes from electronic health records. The AI model can quickly determine the cancer stage by interpreting a specific component of the patient's electronic health record: the pathology report, which details the findings from pathologists’ examination of tissue samples. In tests with thousands of patient records, the researchers confirmed that their AI model effectively staged patients’ cancers.

The method is based on a transformer AI model, which mimics the complex decision-making abilities of the human brain. To develop the model, the researchers first trained it using publicly available pathology reports from The Cancer Genome Atlas, a government database containing data from nearly 7,000 patients across 23 types of cancers. To test its versatility, the model was then applied to nearly 8,000 pathology reports from a single medical center. The results, measured using a standard AI evaluation statistic, showed that the model performed with high accuracy. In addition to screening patients for clinical trials based on their cancer stages, the AI model can also automate the classification of patients for observational studies, retrospective data analysis, and treatment planning. The researchers have made their AI model, named BB-TEN (Big Bird – TNM staging Extracted from Notes), available to other institutions for academic and certain other uses.

“By speeding up the selection of candidates for cancer clinical trials, this innovative AI model shows promise for accelerating the development of relevant treatments and making them available to more patients,” said Jason Moore, PhD, chair of the Department of Computational Biomedicine at Cedars-Sinai.


New
Gold Member
Latex Test
SLE-Latex Test
Gold Member
Troponin T QC
Troponin T Quality Control
New
Varicella Zoster Virus Assay
LIAISON VZV Assay Panel (IgG HT, IgM)
New
Vasculitis Diagnostic Test
AESKULISA Vasculitis-Screen
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: New biomarkers could someday make it easy to spot Parkinson’s disease in a patient’s blood sample (Photo courtesy of Shutterstock)

Unique Blood-Based Genetic Signature Can Diagnose Parkinson’s Disease

Parkinson's disease is primarily recognized for its impact on the central nervous system. Recent scientific progress has shifted focus to understanding the involvement of the immune system in the onset... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Technology

view channel
Image: Concept of biosensor integrated into hygiene pads enabling direct semi-quantitative analysis of biomarkers in unprocessed menstruation blood (Photo courtesy of Dosnon, L et al. DOI: 10.1002/advs.202505170)

First Ever Technology Recognizes Disease Biomarkers Directly in Menstrual Blood in Sanitary Towels

Over 1.8 billion people menstruate worldwide, yet menstrual blood has been largely overlooked in medical practice. This blood contains hundreds of proteins, many of which correlate with their concentration... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.