We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




AI Analysis of Immune Cells Predicts Breast Cancer Prognosis

By LabMedica International staff writers
Posted on 20 Nov 2024

Tumor-infiltrating lymphocytes (TILs) are immune cells crucial in combating cancer. More...

Their presence in a tumor indicates that the immune system is attempting to attack and eliminate cancer cells. TILs can be important indicators in predicting how patients with triple-negative breast cancer will respond to treatment and how the disease might progress. However, assessing these immune cells can yield inconsistent results. Artificial intelligence (AI) has the potential to standardize and automate this process, but proving its effectiveness for healthcare use has been challenging. Now, researchers have explored how different AI models can predict the prognosis of triple-negative breast cancer by analyzing specific immune cells within the tumor. This study, published in eClinicalMedicine, represents a significant step toward incorporating AI into cancer care to enhance patient outcomes.

Researchers at Karolinska Institutet (Stockholm, Sweden) tested ten different AI models to evaluate their ability to analyze tumor-infiltrating lymphocytes in tissue samples from patients with triple-negative breast cancer. The results revealed that the performance of the AI models varied, but eight out of the ten models demonstrated strong prognostic capability, meaning they could predict patient health outcomes with similar accuracy. Even models trained on smaller datasets showed promising results, suggesting that tumor-infiltrating lymphocytes are a reliable biomarker. The study highlights the need for large datasets to compare different AI models and validate their effectiveness before they can be used in clinical practice. Although the findings are promising, further validation is required.

“Our research highlights the importance of independent studies that mimic real clinical practice,” said Balazs Acs, researcher at the Department of Oncology-Pathology, Karolinska Institutet. “Only through such testing can we ensure that AI tools are reliable and effective for clinical use.”


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
Gold Member
Collection and Transport System
PurSafe Plus®
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: Development of targeted therapeutics and diagnostics for extrapulmonary tuberculosis at University Hospital Cologne (Photo courtesy of Michael Wodak/Uniklinik Köln)

Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis

Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.