We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Technology for Sampling Body Liquids in Confined Spaces to Enable Early Cancer Detection

By LabMedica International staff writers
Posted on 17 Sep 2024
Print article
Image: Group of capsules moving in tubular tortuous structures and sampling liquids (Photo courtesy of Vanderbilt University)
Image: Group of capsules moving in tubular tortuous structures and sampling liquids (Photo courtesy of Vanderbilt University)

Body fluids—such as blood, pancreatic juice, urine, and mucus—contain valuable information about chemical composition, biomarkers, bacterial colonies, and other key components. This information aids researchers in understanding the mechanisms of various diseases, including cancer, and monitoring patients' health. Wireless mobile robots at the millimeter scale have shown promise in navigating confined spaces to collect these fluids due to their small size and agile movement. However, these devices have lacked the ability to sample liquids effectively because of the absence of efficient triggering and sealing mechanisms at such small scales. Researchers have now addressed this gap by developing technology for sampling body fluids in narrow and complex spaces, which could enable early detection of diseases like cancer.

A research team at Vanderbilt University (Nashville, TN, USA) has developed millimeter-scale soft capsules made of hydrogel-and-elastomer hybrids, which are controlled using external magnetic fields. These devices, according to the researchers, can be delivered and retrieved via a thin catheter and are capable of navigating tubular structures that are otherwise inaccessible to catheters. The soft capsules are coated with a specialized wetting property that enables them to efficiently pump liquids inside. As reported in Science Advances, the integration of on-demand triggering, sampling, and sealing mechanisms, along with agile group locomotion, allowed the team to demonstrate precise control of these soft capsules. They successfully navigated and sampled body fluids in a phantom and ex vivo animal organ, guided by ultrasound and X-ray medical imaging.

“The millimeter-scale soft capsules introduced in this work open avenues for minimally invasive and targeted liquid biopsy in confined spaces such as the pancreas duct, enabling early disease diagnosis and providing insights into disease development through the sampling, retrieval, and analysis of abundant chemicals within organs,” said Xiaoguang Dong, assistant professor of mechanical and biomedical engineering at Vanderbilt University, who led the research.

Related Links:
Vanderbilt University

New
Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Unit-Dose Packaging solution
HLX
New
C-Reactive Protein Test
mLabs CRP
New
Dengue Virus Immunochromatographic Assay
STANDARD Q Dengue IgM/IgG Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: A scanning electron microscope image of chiral gold nanoparticles developed for a new microfluidic chip (Matter, 2024; DOI: 10.1016/j.matt.2024.09.005)

Simple Blood Draw Helps Diagnose Lung Cancer 10 Times Faster

Once dismissed as cellular waste, exosomes—tiny vesicles released by cells containing proteins, DNA, or RNA fragments—have emerged as vital players in cell-to-cell communication over the past decade.... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The inbiome molecular culture ID technology has received FDA breakthrough device designation (Photo courtesy of inbiome)

Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics

Bacterial infections pose a major threat to public health, contributing to one in five deaths worldwide. Current diagnostic methods often take several days to provide results, which can delay appropriate... Read more

Industry

view channel
Image: The GeneXpert system’s fast PCR Xpert tests can fight AMR and superbugs with fast and accurate PCR in one hour (Photo courtesy of Cepheid)

Cepheid Partners with Fleming Initiative to Fight Antimicrobial Resistance

Antimicrobial resistance (AMR) is responsible for over one million deaths globally each year and poses a growing challenge in treating major infectious diseases like tuberculosis, Escherichia coli (E.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.