We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics

Olympus

Manufactures optical and digital equipment for the healthcare and consumer electronics sectors, including endoscopy a... read more Featured Products: More products

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
05 Mar 2022 - 09 Mar 2022
Virtual Venue

Novel Protein Biomarkers Identified for Prostate Cancer Aggressiveness

By LabMedica International staff writers
Posted on 05 Jan 2022
Print article
Image: A) NDUFS1 immunohistochemistry staining of prostate cancer (PCa) tissue microarray (TMA) samples and B) ATP5O immunohistochemistry staining of PCa TMA samples. Staining intensity as per number. Scale bar = 100 µm (Photo courtesy of Medical University of Vienna)
Image: A) NDUFS1 immunohistochemistry staining of prostate cancer (PCa) tissue microarray (TMA) samples and B) ATP5O immunohistochemistry staining of PCa TMA samples. Staining intensity as per number. Scale bar = 100 µm (Photo courtesy of Medical University of Vienna)
Prostate cancer is the most commonly diagnosed cancer in men and is among the top five causes of cancer-related death. In most cases, prostate cancer can be successfully treated but there is a group of patients who suffer an aggressive course and often fatal outcome.

In order to be able to treat prostate cancer more efficiently, it is necessary to understand the complex processes in the tumor at the molecular level. Though multiple genomic and transcriptomic-based analyses have been conducted, the results have not yet contributed to an improvement of diagnostics and therapy of Prostate cancer (PCa) patients.

Clinical Scientist at the Medical University of Vienna (Vienna, Austria) and their colleagues acquired formalin-fixed and paraffin-embedded (FFPE) prostate material from 88 patients with primary PCa and seven patients with bladder cancer. Human tissue-microarray (TMA) generation as well as sample selection and preparation for laser microdissection were conducted.

Immunohistochemistry was conducted on FFPE TMAs using consecutive sections. Staining was performed using the BenchMark ULTRA automated staining system Ventana Medical Systems, Tucson, AZ USA). The samples were analyzed using an Olympus system (Tokyo, Japan). Proteomic Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) Analysis was also performed.

The investigators reported that retrospective data analysis identified 153 proteins differentially expressed between STAT3-low and STAT3-high samples. Out of these, 46 proteins were associated with mitochondrial processes including oxidative phosphorylation (OXPHOS), and 45 proteins were upregulated, including NDUFS1/ATP5O. In a STAT3 independent PCa cohort, high expression of NDUFS1/ATP5O was confirmed by immunocytochemistry (IHC) and was significantly associated with earlier biochemical recurrence (BCR). mRNA expression levels for these two genes were significantly higher in intra-epithelial neoplasia and in PCa compared to benign prostate glands. NDUFS1/ATP5O levels are increased both at the mRNA and protein level in aggressive PCa.

The authors noted that further analyses of the transcriptome, which comprises all genes that are transcribed in the cell at a certain point in time, also showed a rectified shift in the concentration of messenger ribonucleic acid (mRNA). This means that there is a direct correlation between the genetic transcripts and the proteins produced. The study represents an important step in establishing a link between NDUFS, ATP5O and cancer aggressiveness. NDUFS1 and ATP5O could therefore serve as additional immunohistochemical markers for aggressive prostate tumors and, at the same time, as new targets for cancer treatment. The study was published on November 30, 2021 in the journal Cancers.

Related Links:
Medical University of Vienna
Ventana Medical Systems
Olympus


Gold Supplier
Fluorimetric Immunoassay Analyzer
Confiscope F20
New
3-Part Diff Auto Hematology Analyzer
Cellagon 3
New
Immunodiagnostic Analyzer
LiCA 5000
New
Automatic Nucleic Acid Purification System
GenePure Pro

Print article
IIR Middle East

Channels

Molecular Diagnostics

view channel
Image: The ultrarapid genome sequencing pipeline, indicating all processes from sample collection to a diagnosis. Vertically stacked processes are run in parallel (Photo courtesy of Stanford University)

Ultrarapid Nanopore Genome Sequencing in a Critical Care Setting

A genetic diagnosis can guide clinical management and improve prognosis in critically ill patients, and much effort has gone into developing methods that result in rapid, reliable results.... Read more

Hematology

view channel
Image: My Qualiris QC (Photo courtesy of Stago)

Stago Launches New My Qualiris QC Website for Brand-New User Experience

Stago (Paris, France) has launched its new My Qualiris QC website which provides a brand-new user experience with a 24/7 accessible web-application where the results of a user’s network are only a few clicks away.... Read more

Industry

view channel
Illustration

Global Immunofluorescence Assay (IFA) Market to Surpass USD 4 Billion by 2028 Due to Growing Burden of Infectious Diseases

The global immunofluorescence assay (IFA) market is expected to reach USD 4.01 billion by 2028, driven by the increasing global healthcare burden of chronic and infectious diseases, rising application... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.