Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




Rapid Blood Test Detects and Distinguishes Between 18 Infectious or Inflammatory Diseases

By LabMedica International staff writers
Posted on 21 Aug 2023

Infectious and inflammatory diseases often bring children into hospitals and clinics for medical care. More...

The challenge for healthcare professionals lies in accurately differentiating between potentially severe bacterial infections and less critical ailments, especially when symptoms such as fever are common to many illnesses. As a result, many patients might receive broad-spectrum antibiotics as a precautionary measure until bacterial infection is ruled out. This overuse of antibiotics contributes to antimicrobial resistance and an uptick in drug-resistant infections. Traditional diagnostic tests typically focus on identifying specific pathogens, like SARS-CoV-2, HIV, or Influenza through lateral flow tests (LFTs), or bacteria and yeast through blood cultures. However, these methods have their limitations. LFTs can only confirm or deny a specific cause, while blood cultures may take up to 72 hours or more for reliable results. But now, a promising blood test that can rapidly diagnose the cause of a child's illness is being hailed as ‘transformative’.

An international team, led by researchers at Imperial College London (London, UK) has developed and validated a diagnostic method that can simultaneously detect and differentiate between 18 infectious or inflammatory diseases, such as group B Streptococcus (GBS), respiratory syncytial virus (RSV), and tuberculosis. Unlike current tests that can take hours, days, or even weeks, this approach is designed to yield results in under an hour. The innovative test uses a single blood sample to diagnose the cause of fever by recognizing specific patterns of genes that are activated or deactivated by the body in response to particular illnesses. The finding builds on over a decade of research that seeks to detect and diagnose illnesses through gene expression patterns.

In this new study, the researchers analyzed the pattern of gene expression in blood in response to various infections and inflammatory conditions. They collected data from thousands of patients, including over 1000 children suffering from 18 infectious or inflammatory diseases, to identify the key genes that were switched ‘on’ or ‘off’. Utilizing machine learning, the team identified a panel of 161 genes for 18 conditions that corresponded to specific disease areas and pathogens. To further validate the panel, the researchers assessed a group of 411 pediatric patients hospitalized with sepsis or severe infections. Gene expression from blood analysis was compared to diagnoses made using existing clinical methods.

As introducing new diagnostic tests in a clinical setting can have severe consequences if misdiagnoses occur, the team applied a 'cost-sensitive' measure, consulting a panel of five clinical experts to ensure the test could accurately avoid misdiagnoses where the consequences would be most significant. While still in the proof-of-concept stage, the researchers are hopeful that a diagnostic test centered on patients' gene expression could markedly enhance the diagnosis of childhood diseases. This breakthrough could minimize delayed or missed diagnoses and make a substantial difference in healthcare, especially in regions with limited resources.

“This body of work has enabled us to identify the molecular signature of a wide range of diseases based on 161 genes, out of thousands of genes in the human genome. By distinguishing between many diseases at the same time within the same test, we have developed a more comprehensive and accurate model that aligns with the way clinicians think about diagnosis,” said Dr. Myrsini Kaforou, Senior Lecturer within Imperial’s Department of Infectious Disease. “A future diagnostic test based on this approach could help provide the right treatment, to the right patient, at the right time, while optimizing antibiotic use, and reducing lengthy time to diagnosis for inflammatory diseases.”

Related Links:
Imperial College London 


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Serological Pipet Controller
PIPETBOY GENIUS
New
Silver Member
Quality Control Material
Multichem ID-B
New
Silver Member
Quality Control Material
NATtrol Chlamydia trachomatis Positive Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.