We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




AI Leverages Tumor Genetics to Predict Patient Response to Chemotherapy

By LabMedica International staff writers
Posted on 23 Jan 2024

Understanding tumor responses to drugs becomes challenging due to the complex nature of DNA replication, a critical target for many cancer treatments. More...

All cells, including cancer ones, depend on a sophisticated system for DNA replication during cell division. Most chemotherapies aim to disrupt this replication process in rapidly multiplying tumor cells. Given the diverse genetic mutations in tumors, predicting drug resistance remains a formidable challenge. Now, scientists have developed a machine learning algorithm capable of predicting when cancer will resist chemotherapy. This model was specifically tested on cervical cancer, accurately predicting responses to cisplatin, a widely used chemotherapy drug. It efficiently identified tumors likely to resist treatment and shed light on the molecular mechanisms driving this resistance.

Developed by the University of California San Diego School of Medicine (La Jolla, CA, USA), the algorithm assesses how various genetic mutations collectively impact a tumor's response to DNA replication-inhibiting drugs. The research centered around 718 genes typically analyzed in clinical genetic testing for cancer. These genes' mutations formed the basis for the machine learning model, trained using publicly available drug response data. This process led to the identification of 41 molecular complexes — clusters of interacting proteins — where genetic alterations affect drug effectiveness. The model's efficacy was particularly demonstrated in cervical cancer, where approximately 35% of tumors show resistance to treatment.

The algorithm successfully distinguished between tumors that were likely to respond to treatment, correlating with better patient outcomes, and those that were resistant. Importantly, the model also provided insights into its decision-making process by pinpointing the protein complexes driving resistance in cervical cancer. This interpretability feature of the model is crucial not only for its effectiveness but also in establishing reliable AI systems in medical applications.

"Clinicians were previously aware of a few individual mutations that are associated with treatment resistance, but these isolated mutations tended to lack significant predictive value. The reason is that a much larger number of mutations can shape a tumor's treatment response than previously appreciated," said Trey Ideker, PhD, professor in Department of Medicine at UC San Diego of Medicine. "Artificial intelligence bridges that gap in our understanding, enabling us to analyze a complex array of thousands of mutations at once."

"Unraveling an AI model's decision-making process is crucial, sometimes as important as the prediction itself," added Ideker. "Our model's transparency is one of its strengths, first because it builds trust in the model, and second because each of these molecular assemblies we’ve identified becomes a potential new target for chemotherapy. We’re optimistic that our model will have broad applications in not only enhancing current cancer treatment, but also in pioneering new ones."

Related Links:
University of California San Diego


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Gold Member
Latex Test
SLE-Latex Test
New
Myocardial Infarction Test
Finecare cTn I/NT-proBNP Rapid Quantitative Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The POC device rapidly predicts neonatal respiratory disease at birth in the NICU (Photo courtesy of SIME Diagnostics)

AI-Powered Lung Maturity Test Identifies Newborns at Higher Risk of Respiratory Distress

Each year, approximately 300,000 babies in the United States are born between 32 and 36 weeks' gestation, according to national health data. This group is at an elevated risk for respiratory distress,... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Pathology

view channel
Image: A biomarker discovery pipeline has shown promise as a noninvasive method of diagnosing CRC (Photo courtesy of NCI Center for Cancer Research)

Machine Learning Tool Enables Noninvasive Diagnosis and Monitoring of Colorectal Cancer

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the United States when considering both genders. Colonoscopy remains the gold standard for CRC diagnosis, but it is invasive,... Read more

Technology

view channel
Image: Scanning electron microscopy images showing 3D micro-printed Limacon-shaped whispering-gallery-mode microcavities with different amounts of deformation (Photo courtesy of A. Ping Zhang/PolyU)

Tiny Microlaser Sensors with Supercharged Biosensing Ability to Enable Early Disease Diagnosis

Optical whispering-gallery-mode microlaser sensors function by trapping light within tiny microcavities. When target molecules bind to the cavity, they induce subtle changes in the laser’s frequency, allowing... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.