Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Single-Cell Analysis Elucidates Mutation Patterns in Myeloid Malignancies

By LabMedica International staff writers
Posted on 01 Dec 2020
Myeloid malignancies are clonal diseases of hematopoietic stem or progenitor cells. More...
Myeloid malignancies, including acute myeloid leukemia (AML), arise from the expansion of these hematopoietic stem and progenitor cells that acquire somatic mutations.

Bulk molecular profiling has suggested that mutations are acquired in a stepwise fashion: mutant genes with high variant allele frequencies appear early in leukemogenesis, and mutations with lower variant allele frequencies are thought to be acquired later.

A large team of Hematologist and Oncologists at the Memorial Sloan Kettering Cancer Center (New York, NY, USA) delineated the clonal framework of myeloid malignancies. They performed single-cell mutational profiling on 146 samples from 123 patients, mapping clonal trajectories for each sample and observing mutations that combined to promote clonal expansion and dominance. The investigators also combined protein expression with mutational analysis to map somatic genotype and clonal architecture with immunophenotype. Overall, they said, these findings provided insights into the pathogenesis of myeloid transformation and how clonal complexity evolves with disease progression.

The team used a custom amplicon panel from Mission Bio (South San Francisco, CA, USA) covering 31 frequently mutated genes, to perform single-cell sequencing. They sequenced 740,529 cells from 146 samples from patients at diagnosis and/or relapse. The most common mutations they identified were in DNMT3A, TET2, NPM1, and FLT3. They next investigated disease subtypes, subdividing the cases into samples with epigenetic mutations, samples with signaling mutations, samples without epigenetic mutations, and samples with epigenetic and co-mutated signaling effectors. Of the 80 AML samples with epigenetic mutations, nearly 53% harbored mutations in more than one epigenetic modifier. In nearly all cases, epigenetic regulator mutations were in the same clone, and in 81% of cases the co-occurring mutations were within the dominant clone, suggesting cooperativity between epigenetic mutations.

The number of mutations per sample was significantly higher in AML than in myeloproliferative neoplasms (MPN) and in MPN than in clonal hematopoiesis (CH). The increase in mutations per sample was more pronounced in cases of AML with signaling effector mutations, specifically those in RAS and FLT3. The investigators were then able to identify gene-specific contributions to clonal expansion, finding that IDH2, NPM1, and JAK2 mutations were nearly always present in the dominant clone, whereas FLT3 and RAS mutations were present only in minor subclones in some patients, and in dominant clones in others. In four out of six patients in whom the disease transformed from MPN to AML, they observed a significant alteration in clonal architecture, with emergence of new dominant clones.

The authors concluded that the data suggested that myeloid malignancies manifest as a complex ecosystem of clones that evolves over time, and that scDNA-seq gives a glimpse into this milieu that is not seen with conventional bulk sequencing. Studies of clonal architecture at a single-cell level give us insights into how clonal complexity contributes to the pathogenesis of myeloid transformation. The study was published on October 28, 2020 in the journal Nature.

Related Links:
Memorial Sloan Kettering Cancer Center
Mission Bio



New
Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.