We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Leukocyte Counts Change in Liver Phase of Malaria

By LabMedica International staff writers
Posted on 22 Nov 2017
Print article
Image: Thin blood film showing ring-form trophozoites of Plasmodium falciparum and a neutrophil containing malaria pigment (Photo courtesy of Hammersmith Hospital).
Image: Thin blood film showing ring-form trophozoites of Plasmodium falciparum and a neutrophil containing malaria pigment (Photo courtesy of Hammersmith Hospital).
Both in endemic countries and in imported malaria, changes in total and differential leukocyte count during Plasmodium falciparum infection have been described.

In clinical studies, both in endemic countries and in patients with imported malaria, the most pronounced change is the decrease of peripheral lymphocytes. Lymphocytopenia has been observed in 45% to 63% of patients with an imported P. falciparum infection, but was less prominent in patients with some degree of anti-malarial immunity.

A team of Dutch scientists working with the Institute for Tropical Diseases, Harbour Hospital and the Erasmus Medical Center (Rotterdam, The Netherlands) performed two separate Controlled Human Malaria Infection (CHMI) studies to study the exact dynamics of differential leukocyte counts and their ratios; they were monitored in a group of healthy non-immune volunteers. In two CHMI trials, CHMI-a and CHMI-b, 15 and 24 healthy malaria-naïve volunteers, respectively, were exposed to bites of infected mosquitoes, using the P. falciparum strain NF54 and the novel clones NF135.C10 and NF166.C8. After mosquito bite exposure, twice-daily blood draws were taken to detect parasitemia and to monitor the total and differential leukocyte counts. All subjects received a course of atovaquone–proguanil when meeting the treatment criteria.

A total of 39 volunteers participated in the two trials. All 15 participants in CHMI-a and 20 of the 24 volunteers in CHMI-b, developed parasitemia. During liver stage development of the parasite, the median total leukocyte count increased from 5.5 to 6.1 × 109 leukocytes/L, the median lymphocyte count from 1.9 to 2.2, and the monocyte count from 0.50 to 0.54. During the subsequent blood stage infection, significant changes in total and differential leukocyte counts lead to a leukocytopenia (nadir median 3.3 × 109 leukocytes/L), lymphocytopenia (nadir median 0.7 × 109 lymphocytes/L, and a borderline neutropenia (nadir median 1.5 × 109 neutrophils/L. The neutrophil to lymphocyte count ratio (NLCR) reached a maximum of 4.0. Significant correlations were found between parasite load and absolute lymphocyte count and between parasite load and NLCR.

The authors concluded that during the clinically silent liver phase of malaria, an increase of peripheral total leukocyte count and differential lymphocytes and monocytes occurs. This increase is followed by the appearance of parasites in the peripheral blood after 2 to 3 days, accompanied by a marked decrease in total leukocyte count, lymphocyte count and the neutrophil count and a rise of the NLCR. Both the lymphocyte count and the NLCR correlated with blood parasitemia, and all parameters had normalized 3 to 4 weeks after parasite clearance. The study was published on November 10, 2017, in the Malaria Journal.

Related Links:
Erasmus Medical Center

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Epstein-Barr Virus Test
Mononucleosis Rapid Test
New
Total Thyroxine Assay
Total Thyroxine CLIA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The breakthrough could result in a higher success rate using a simple oral swab test before IVF (Photo courtesy of Shutterstock)

POC Oral Swab Test to Increase Chances of Pregnancy in IVF

Approximately 15% of couples of reproductive age experience involuntary childlessness. A significant reason for this is the growing trend of delaying family planning, a global shift that is expected to... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.