We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





COVID-19 PCR and Antibody Tests Record Negative Result in People with ‘Immune Memory’, Reveals Study

By LabMedica International staff writers
Posted on 13 Nov 2021
Print article
Illustration
Illustration

An observational study which analyzed the immune responses in healthcare workers has found that some of them repeatedly tested negative for COVID-19 by PCR and antibody tests, but showed an increase in immune memory cells.

The findings of the study by scientists from University College London (London, UK) suggest that by designing vaccines that activate these immune memory cells, known as T cells, to attack infected cells expressing this part of the virus’s internal machinery, it may be possible to eliminate SARS-CoV-2 at the very outset, thereby helping stop its spread. This approach could complement the current COVID-19 vaccines, which only trigger immune responses to the spike protein that protrudes from the outside of the virus. Researchers say the discovery could lead to the creation of a pan-coronaviruses vaccine, that not only protects against SARS-CoV-2 and its variants, but also against coronaviruses that cause common colds, and to new emerging animal coronaviruses. Researchers say next generation vaccines could be developed to induce both memory T cells to target replication proteins and antibodies to target the spike protein.

This fundamental science discovery is borne from an observational study that analyzed the immune responses in a large cohort of London-based healthcare workers from the very start of the first UK pandemic wave. In a subset of healthcare workers, who showed no sign of SARS-CoV-2 infection (repeatedly testing negative by PCR and antibody tests) there was, however, an increase in T cells. Rather than having avoided infection completely, a subset of healthcare workers appear to have experienced a transient low-level (abortive) infection, not detectable by routine tests, but which generated T cells specific to SARS-CoV-2; compatible with this, the same individuals also had a low-level increase in another blood marker of viral infection.

“Our research shows that individuals who naturally resisted detectable SARS-CoV-2 infection generated memory T cells that target infected cells expressing the replication proteins, part of the virus’s internal machinery,” said senior author Professor Mala Maini (UCL Infection & Immunity). “These proteins - required for the earliest stage of the virus’s life cycle, as soon as it enters a cell - are common to all coronaviruses and remain ‘highly conserved’, so are unlikely to change or mutate. A vaccine that can induce T cells to recognize and target infected cells expressing these proteins, essential to the virus’s success, would be more effective at eliminating early SARS-CoV-2, and may have the added benefit that they also recognize other coronaviruses that currently infect humans or that could in the future.”

“T cells recognizing the virus’ replication machinery would provide an additional layer of protection to that provided by the spike-focused immunity that is generated by the already highly efficacious current vaccines,” added Professor Maini. “This dual-action vaccine would provide more flexibility against mutations, and because T cells can be incredibly long-lived, could also provide longer-lasting immunity. By expanding pre-existing T cells, such vaccines could help to stop the virus in its tracks at a very early stage.”

Related Links:
University College London 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.