We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App





Simple, Inexpensive and Sensitive Molecular Test for Detecting SARS-CoV-2 in Saliva Ideal for Frequent Screening

By LabMedica International staff writers
Posted on 25 Jun 2021
Print article
Illustration
Illustration
Researchers have developed a simple, inexpensive, and sensitive molecular test for the detection of SARS-CoV-2 in saliva that is ideal for frequent screening.

WHotLAMP, the rapid molecular test to detect SARS-CoV-2 in saliva developed at Columbia University’s Zuckerman Institute (New York, NY, USA), is simple to use, highly sensitive (3.6 viral RNA copies per microliter of saliva) and specific, as well as inexpensive, making it ideal for frequent screening. Moreover, WHotLAMP does not require toxic chemicals or specialized equipment and thus, can be performed in point-of-care settings, and may also be adapted for resource-limited environments or home use. While applied here to SARS-CoV-2, WHotLAMP can be modified to detect other pathogens, making it adaptable for other diagnostic assays, including for use in future outbreaks.

In their studies, the researchers showed that WHotLAMP can detect low levels of SARS-CoV-2 virus in saliva in 30 minutes. Its low false-positive rate allows for deployment under conditions of low prevalence, where high test specificity is particularly important to achieve high positive predictive values. The current assay design is already applicable to test at POC settings. Moreover, its single-tube format that requires no centrifugation, is conducive to scaling to 96-well formats, but can also be adapted for home use for frequent self-administered monitoring. While the researchers focused on a test for SARS-CoV-2, this technology could also be used to detect other pathogens that are present in saliva by substituting primers, making WHotLAMP a broadly useful diagnostic assay.


Related Links:
Columbia University

New
Gold Member
Multiplex Genetic Analyzer
MassARRAY Dx Analyzer (Europe only)
Verification Panels for Assay Development & QC
Seroconversion Panels
New
FOB+Transferrin+Calprotectin+Lactoferrin Test
CerTest FOB+Transferrin+Calprotectin+Lactoferrin Combo Test
New
TRAcP 5b Assay
TRAcP 5b (BoneTRAP) Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Molecular Diagnostics

view channel
Image: Macrophages infected with mycobacterium tuberculosis (Photo courtesy of MIT)

New Molecular Label to Help Develop Simpler and Faster Tuberculosis Tests

Tuberculosis (TB), the deadliest infectious disease globally, is responsible for infecting an estimated 10 million people each year and causing over 1 million deaths annually. While chest X-rays and molecular... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.