Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App





Bacteriophage Analysis Technique Reveals Details of COVID-19’s Impact on the Immune System

By LabMedica International staff writers
Posted on 06 Oct 2020
An analytical technique that can determine which of more than 1,000 different viruses have infected a person, has been utilized for a detailed study of the SARS-CoV-2 (COVID-19) virus and its impact on the immune system.

Investigators at Harvard Medical School (Boston, MA, USA) worked with VirScan, a technology in which peptide-displaying bacteriophages were incubated with a single drop of patient’s blood. More...
Antiviral antibodies in the blood bound to their target epitopes on the bacteriophages. Antibody bound bacteriophages were then captured. DNA sequencing of these bacteriophages indicated which viral peptides were bound to antibodies. In this way, an individual’s complete viral serological history, including both vaccination and infection, could be determined.

For the current study, the investigators used VirScan to analyze blood samples from 232 COVID-19 patients and 190 pre-COVID-19 era controls.

Results revealed over 800 epitopes (sites recognized by the immune system) in the SARS-CoV-2 proteome, including 10 epitopes likely recognized by neutralizing antibodies. Pre-existing antibodies in control samples recognized SARS-CoV-2 ORF1, while only COVID-19 patients primarily recognized spike and nucleoprotein. A machine learning model trained on VirScan data predicted SARS-CoV-2 exposure history with 99% sensitivity and 98% specificity.

Individuals with more severe COVID-19 exhibited stronger and broader SARS-CoV-2 responses, weaker antibody responses to prior infections, and higher incidence of CMV (Cytomegalovirus) and HSV-1 (Herpes simplex virus 1). Among hospitalized patients, males had greater SARS-CoV-2 antibody responses than females.

"This may be the deepest serological analysis of any virus in terms of resolution," said senior author Dr. Stephen Elledge, professor of genetics at Harvard Medical School. "We now understand much, much more about the antibodies generated in response to SARS-CoV-2 and how frequently they are made. The next question is, what do those antibodies do? We need to identify which antibodies have an inhibitory capacity or which, if any, may promote the virus and actually help it enter into immune cells."

"Our paper illuminates the landscape of antibody responses in COVID-19 patients," said Dr. Elledge. "Next, we need to identify the antibodies that bind these recurrently recognized epitopes to determine whether they are neutralizing antibodies or antibodies that might exacerbate patient outcomes. This could inform the production of improved diagnostics and vaccines for SARS-CoV-2."

The VirScan analysis of COVID-19 was published in the September 29, 2020, online edition of the journal Science.

Related Links:
Harvard Medical School


Gold Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.