We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Protein Crystals Used to Prepare Cellular Drug Delivery Nanotubes

By LabMedica International staff writers
Posted on 28 Nov 2018
Print article
Image: The method for assembly of protein nanotubes involved a four-step process: 1) introduction of cysteine residues into the wild-type protein; 2) crystallization of the engineered protein into a lattice structure; 3) formation of a cross-linked crystal; and 4) dissolution of the scaffold to release the protein nanotubes (Photo courtesy of Chemical Science).
Image: The method for assembly of protein nanotubes involved a four-step process: 1) introduction of cysteine residues into the wild-type protein; 2) crystallization of the engineered protein into a lattice structure; 3) formation of a cross-linked crystal; and 4) dissolution of the scaffold to release the protein nanotubes (Photo courtesy of Chemical Science).
A team of Japanese biomolecular engineers used scaffolds of cross-linked protein crystals to prepare nanotubes, which are structures that can serve as the basis for minute delivery systems for drugs and other substances.

Investigators at the Tokyo Institute of Technology (Japan) reported in the October 30, 2018, online edition of the journal Chemical Science that they had developed a new method for preparing nano-size structures using protein crystals as non-equilibrium molecular scaffolds. Protein crystals were found to provide an ideal environment with a highly ordered packing of subunits in which the supramolecular assembled structures formed in the crystalline matrix.

The investigators used the protein RubisCO (Ribulose-1,5-bisphosphate carboxylase/oxygenase) as the building block for construction of the nanotubes. This protein was selected for its high stability, which enabled it to retain its shape and crystal structure.

As described, the method comprised four steps: (1) Preparation of an engineered protein; (2) formation of the protein crystal scaffold; (3) formation of a cross-linked crystal; (4) release of the protein nanotubes by dissolving the scaffold. The assembly of tubes was driven by the formation of disulfide bonds to retain the intermolecular interactions within each assembly in the crystalline matrix after dissolution of the crystals. Transmission electron microscopy (TEM) was used to confirm the formation of the protein nanotubes.

"Our cross-linking method can facilitate the formation of the crystal scaffold efficiently at the desired position (specific cysteine sites) within each tube of the crystal," said senior author Dr. Takafumi Ueno, professor of biomolecular engineering at the Tokyo Institute of Technology. "At present, since more than 100,000 protein crystal structures have been deposited in protein data bank, our method can be applied to other protein crystals for construction of supramolecular protein assemblies, such as cages, tubes, sheets."

Related Links:
Tokyo Institute of Technology

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Benchtop Cooler
PCR-Cooler & PCR-Rack
New
Creatine Kinase-MB Assay
CK-MB Test

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.