We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Research Determines Why Different Cancers Display Similar Profiles

By LabMedica International staff writers
Posted on 17 Oct 2018
Print article
Image: A photomicrograph of small cell neuroendocrine prostate cancer: cancer cells are seen expressing diagnostic prostate cancer markers in green and red (blue color indicates the cell nucleus) (Photo courtesy of Jung Wook Park & Owen Witte, University of California, Los Angeles).
Image: A photomicrograph of small cell neuroendocrine prostate cancer: cancer cells are seen expressing diagnostic prostate cancer markers in green and red (blue color indicates the cell nucleus) (Photo courtesy of Jung Wook Park & Owen Witte, University of California, Los Angeles).
A team of cancer researchers has identified a molecular mechanism that may explain why gene expression profiles are similar in late stage cancers from different organs.

The use of modern chemotherapeutic techniques to treat epithelial cancers leads to the development of multiple resistance mechanisms, including the generation of highly aggressive, small cell neuroendocrine carcinoma (SCNC). SCNC patients have a poor prognosis due in part to a limited understanding of the molecular mechanisms driving this malignancy and the lack of effective treatments. In particular, whether distinct cancer types accomplish this “reprogramming” through the same mechanism has been unclear.

Investigators at the University of California, Los Angeles (USA) reported in the October 5, 2018, issue of the journal Science that while healthy prostate and lung cells have very different patterns of gene expression, they display almost identical patterns when they transform into small cell cancers.

The investigators found that a common set of defined oncogenic drivers reproducibly reprogrammed normal human prostate and lung epithelial cells and transformed them into small cell prostate cancer (SCPC) and small cell lung cancer (SCLC), respectively. They identified shared active transcription factor binding regions in the reprogrammed prostate and lung SCNCs by integrative analyses of epigenetic and transcriptional landscapes.

"Small cell cancers of the lung, prostate, bladder, and other tissues were long thought to be similar in name alone - and they were treated by oncologists as different entities," said senior author Dr. Owen Witte, professor of microbiology, immunology, and molecular genetics at the University of California, Los Angeles. "Over the past few years, though, researchers have increasingly begun to realize that there are similarities in the cancers, and that's what our work confirms. Our study revealed shared "master gene regulators" - the key proteins that control expression of multiple genes in small cell cancer cells. Studying the network of the master gene regulators could lead to a new way of combating deadly cancers."

Overall, the results presented in this study suggest that neuroendocrine cancers arising from distinct epithelial tissues may share common vulnerabilities that could be exploited for the development of new drugs to treat SCNCs.

Related Links:
University of California, Los Angeles

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.