We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Bone Marrow Model Promotes Growth of Blood Cell Progenitors

By LabMedica International staff writers
Posted on 14 Jun 2018
Print article
Image: A scanning electron microscopy (SEM) images confirm the deposition of an extracellular matrix, which embeds cells, presumably of both stromal and blood origins (Photo courtesy of the University of Basel).
Image: A scanning electron microscopy (SEM) images confirm the deposition of an extracellular matrix, which embeds cells, presumably of both stromal and blood origins (Photo courtesy of the University of Basel).
A recently developed culture technique has enabled researchers to establish conditions that mimic human bone marrow niches and support the maintenance of some hematopoietic stem and progenitor cell lines.

In adult humans, hematopoietic stem and progenitor cells (HSPCs) reside in the bone marrow (BM) microenvironment. The understanding of human hematopoiesis and the associated niche biology remains limited, due to difficulties in obtaining human source materials and limitations of existing in vitro culture models. The establishment of a functionalized in vitro BM system would offer an experimentally accessible and tunable platform to study human hematopoiesis.

In an effort to create such an in vitro BM system, investigators at the University of Basel (Switzerland) and ETH Zurich (Switzerland) developed an artificial tissue model system in which human blood stem cells remained functional for a prolonged period of time.

The system was described in the June 4, 2018, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences. A perfusion bioreactor vessel was used to house a three-dimensional ceramic-based human BM analog, which recapitulated some of the hematopoietic niche elements. The model system comprised the bone-like scaffold, which was functionalized by human stromal and osteoblastic cells and by the extracellular matrix deposited by the cells during perfusion culture in bioreactors. The resulting tissue exhibited compositional and structural features of human BM while supporting the maintenance of HSPCs. This functionality was due to the compartmentalization of phenotypes in the bioreactor system, where committed blood cells are released into the liquid phase and HSPCs preferentially resided within the engineered BM tissue, establishing physical interactions with the stromal compartment.

In addition, the functional BM model enabled the investigators to demonstrate the possibility of perturbing HSPCs’ behavior within the model's three-dimensional niches by molecular customization or injury simulation.

"We could use bone and bone marrow cells from patients to create an in vitro model of blood diseases such as leukemia, for example. Importantly, we could do this in an environment that consists exclusively of human cells and which incorporates conditions tailored to the specific individual," said senior author Dr. Ivan Martin, professor of tissue engineering at the University of Basel and contributing author Dr. Timm Schroeder, professor for cell systems dynamics at ETH Zurich.

Related Links:
University of Basel
ETH Zurich

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Malondialdehyde HPLC Test
Malondialdehyde in Serum/Plasma – HPLC
New
Fixed Speed Tube Rocker
GTR-FS

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.