We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Aspirin Prevents Diseases by Controlling Nucleolar Stress

By LabMedica International staff writers
Posted on 13 Jun 2018
By identifying the molecular factors controlling nucleolar stress, researchers were able to outline the mechanism by which aspirin affects this stress and protects against certain disease states including colon cancer.

The nucleolus, the site of ribosome biogenesis, is the largest structure in the nucleus of eukaryotic cells. More...
Nucleoli participate in the formation of signal recognition particles and play a role in the cell's response to stress. Nucleoli comprise proteins, DNA, and RNA and form around specific chromosomal regions called nucleolar organizing regions. Malfunction of nucleoli can be the cause of several human conditions called nucleolopathies, and the nucleolus is being investigated as a target for cancer chemotherapy.

The tumor suppressor gene p53 is well known as an effector of nucleolar stress, but p53 independent mechanisms are largely unknown. Like p53, the NF-kappaB transcription factor plays a critical role in maintaining cellular homeostasis under stress. Many stresses that stimulate NF-kappaB also disrupt nucleoli. However, the link between nucleolar function and activation of the NF-κB pathway is as yet unknown.

Towards a better understanding of nucleolar stress, investigators at the University of Edinburgh (United Kingdom) studied this phenomenon in cell cultures and tumor biopsy specimens removed from colon cancer patients.

They reported in the June 5, 2018, online edition of the journal Nucleic Acids Research that artificial disruption of the PolI (DNA polymerase iota) complex stimulated NF-kappaB signaling. Unlike p53 nucleolar stress response, this effect did not appear to be linked to inhibition of rDNA (ribosomal DNA) transcription. Specific stress stimuli of NF-kappaB induced degradation of a critical component of the PolI complex, TIF-IA. This degradation preceded activation of NF-kappaB and was associated with increased nucleolar size.

Blocking TIF-IA degradation with aspirin blocked stress effects on nucleolar size and NF-kappaB signaling. This was demonstrated by showing a strong correlation between degradation of TIF-IA and activation of NF-kappaB in colorectal tumor biopsy cultures exposed to aspirin.

Senior author Dr. Lesley Stark, senior lecturer on the cancer research center at the University of Edinburgh, said, "We are really excited by these findings as they suggest a mechanism by which aspirin may act to prevent multiple diseases. A better understanding of how aspirin blocks TIF-IA and nucleolar activity provides great promise for the development of new treatments and targeted therapy."

Related Links:
University of Edinburgh


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Homocysteine Quality Control
Liquichek Homocysteine Control
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The Simoa p-Tau 217 research assay measures phosphorylated tau in blood (Photo courtesy of Quanterix)

Ultra-Sensitive Blood Biomarkers Enable Population-Scale Insights into Alzheimer’s Pathology

Accurately estimating how many people carry Alzheimer’s disease pathology has long been a challenge, as traditional methods rely on small, clinic-based samples rather than the general population.... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.