We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Neural Cells Repair Spinal Cord Damage without Triggering Rejection

By LabMedica International staff writers
Posted on 24 May 2018
Stem cell researchers working with a porcine model have demonstrated the potential for using neural precursor cells (NPCs) – derived from induced pluripotent stem cells (iPSCs) that had once been skin cells – to repair damage to the spinal cord.

Use of neural stem cells derived from genetically different donors to replace damaged or destroyed tissues, such as in a spinal cord injury, has been hampered by persistent rejection of the grafted cells, necessitating the use of complex drugs and techniques to suppress the host’s immune response.

In experiments designed to get around the immune response, investigators at the University of California, San Diego (USA) grafted NPCs into the spinal cords of syngeneic non-injured pigs with no immunosuppression and into allogeneic (genetically dissimilar pigs) with chronic spinal cord injuries, followed by a transient four-week regimen of immunosuppression drugs.

They reported in the May 9, 2018, online edition of the journal Science Translational Medicine that syngeneic porcine iPSC-derived neural precursor cell transplantation to the spinal cord in the absence of immunosuppression was associated with long-term survival and neuronal and glial differentiation. More...
No tumor formation was noted. Similar cell engraftment and differentiation were shown in spinally injured transiently immunosuppressed swine leukocyte antigen (SLA)–mismatched allogeneic pigs.

These findings demonstrated that iPSC-NPCs could be grafted into syngeneic recipients in the absence of immunosuppression and that temporary immunosuppression was sufficient to induce long-term immune tolerance after NPC engraftment into spinally injured allogeneic recipients. Thus, it was shown that iPSC-NPCs represented an alternative source of transplantable NPCs for the treatment of a variety of disorders affecting the spinal cord, including trauma, ischemia, or amyotrophic lateral sclerosis.

“The promise of iPSCs is huge, but so too have been the challenges. In this study, we have demonstrated an alternate approach,” said senior author Dr. Martin Marsala, professor of anesthesiology at the University of California, San Diego. “We took skin cells from an adult pig, an animal species with strong similarities to humans in spinal cord and central nervous system anatomy and function, reprogrammed them back to stem cells, then induced them to become neural precursor cells (NPCs), destined to become nerve cells. Because they are syngeneic - genetically identical with the cell-graft recipient pig - they are immunologically compatible. They grow and differentiate with no immunosuppression required.”

“Our current experiments are focusing on generation and testing of clinical grade human iPSCs, which is the ultimate source of cells to be used in future clinical trials for treatment of spinal cord and central nervous system injuries in a syngeneic or allogeneic setting,” said Dr. Marsala. “Because long-term post-grafting periods - one to two years - are required to achieve a full grafted cells-induced treatment effect, the elimination of immunosuppressive treatment will substantially increase our chances in achieving more robust functional improvement in spinal trauma patients receiving iPSC-derived NPCs.”

Related Links:
University of California, San Diego


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Shaking Incubator
Corning LSE 71L
New
Hepatitis A Rapid Test
Anti-HAV IgM Rapid Test Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The tip optofluidic immunoassay platform enables rapid, multiplexed antibody profiling using only 1 μL of fingertip blood (Photo courtesy of hLife, DOI:10.1016/j.hlife.2025.04.005)

POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood

As new COVID-19 variants continue to emerge and individuals accumulate complex histories of vaccination and infection, there is an urgent need for diagnostic tools that can quickly and accurately assess... Read more

Pathology

view channel
Image: Microscopy image of invasive breast cancer cells degrading their underlying extracellular matrix (Photo courtesy of University of Turku)

Visualization Tool Illuminates Breast Cancer Cell Migration to Suggest New Treatment Avenues

Patients with breast cancer who progress from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) face a significantly worse prognosis, as metastatic disease remains incurable.... Read more

Technology

view channel
Image: The machine learning-based method delivers near-perfect survival estimates for PAC patients (Photo courtesy of Shutterstock)

AI Method Predicts Overall Survival Rate of Prostate Cancer Patients

Prostate adenocarcinoma (PAC) accounts for 99% of prostate cancer diagnoses and is the second most common cancer in men globally after skin cancer. With more than 3.3 million men in the United States diagnosed... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.