We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Cardiomyocyte Extracellular Vesicles Repair Heart Damage in Model

By LabMedica International staff writers
Posted on 02 May 2018
Studies conducted with a rat myocardial infarction model demonstrated the benefits of treating damaged heart muscle with extracellular vesicles (EVs) secreted by cardiomyocytes.

The ability of EVs to regulate a broad range of cellular processes has recently been exploited for the treatment of diseases. More...
For example, EVs secreted by therapeutic cells injected into infarcted hearts can induce recovery through the delivery of cell-specific microRNAs. However, retention of the EVs and the therapeutic effects are short-lived.

MicroRNAs (miRNAs) and short interfering RNAs (siRNA) comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation.

In order to increase the efficacy of EV treatment, investigators at Columbia University School of Engineering and Applied Science (New York, NY, USA) developed a hydrogel patch capable of slowly releasing EVs after being implanted onto the injured heart in rat models of myocardial infarction. The EVs were isolated after being secreted from cardiomyocytes (CMs) derived from induced pluripotent stem cells.

The investigators reported in the April 23, 2018, online edition of the journal Nature Biomedical Engineering that EV treatment reduced arrhythmic burden, promoted ejection-fraction recovery, decreased CM apoptosis 24 hours after infarction, and reduced infarct size and cell hypertrophy four weeks post-infarction when implanted onto infarcted rat hearts. They also showed that EVs were enriched with cardiac-specific microRNAs known to modulate CM-specific processes.

"We were really excited to find that not only did the hearts treated with cardiomyocyte extracellular vesicles experience much fewer arrhythmias, but they also recovered cardiac function most effectively and most completely," said senior author Dr. Gordana Vunjak-Novakovic, professor of biomedical engineering at Columbia University School of Engineering and Applied Science. "In fact, by four weeks after treatment, the hearts treated with extracellular vesicles had similar cardiac function as those that were never injured."

"Once we better understand how exactly the extracellular vesicles do what they do," said Dr. Vunjak-Novakovic, "we should be able to extend their use to a range of cardiovascular diseases, and significantly advance the field of cell-free heart therapy."

Related Links:
Columbia University School of Engineering and Applied Science


New
Gold Member
Hybrid Pipette
SWITCH
Portable Electronic Pipette
Mini 96
Clinical Chemistry System
P780
Blood Glucose Test Strip
AutoSense Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.