Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Liver-on-Chip Culture System Used to Study Hep B Infection

By LabMedica International staff writers
Posted on 28 Feb 2018
The potential value of an artificial "liver-on-chip" for biomedical research was demonstrated in a study that used the device to explore the mechanisms of hepatitis B infection and propagation.

With more than 240 million people infected worldwide, hepatitis B virus (HBV) is a major international health concern. More...
The inability to mimic the complexity of the liver using cell lines and regular primary human hepatocyte (PHH) cultures have posed significant limitations for studying host/pathogen interactions and for developing a cure for the infection.

To overcome these limitations investigators at Imperial College London (United Kingdom) infected an artificial liver organ-on-chip coupled with a culture system developed by the biotechnology company CN Bio Innovations (Welwyn Garden City, United Kingdom) with HBV.

This liver mimic system, which could be maintained for more than 40 days, enabled the recapitulation of all steps of the HBV life cycle, including the replication of patient-derived HBV and the maintenance of HBV cccDNA (covalently closed circular DNA).

The investigators reported in the February 14, 2018, online edition of the journal Nature Communications that innate immune and cytokine responses following infection with HBV mimicked those observed in HBV-infected patients, thus allowing pathways important for immune evasion to be traced and biomarkers to be validated.

The three-dimensional PHH cultures enabled infection studies to be carried out at 10,000-fold lower MOI units than other advanced culture models. MOI (multiplicity of infection) is the ratio of infectious agents (viruses in this case) to infection targets (the liver cells). Co-culture of PHH with other non-parenchymal cells enabled the identification of the cellular origin of immune effectors, thus providing a valuable preclinical platform for HBV research.

Senior author Dr. Marcus Dorner, non-clinical lecturer in immunology at Imperial College London, said, "This is the first time that organ-on-a-chip technology has been used to test viral infections. Our work represents the next frontier in the use of this technology. We hope it will ultimately drive down the cost and time associated with clinical trials, which will benefit patients in the long run. Once we begin testing viruses and bacteria on other artificial organs, the next steps could be to test drug interaction with the pathogens within the organ-on-chip environment."

Related Links:
Imperial College London
CN Bio Innovations

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Epstein-Barr Virus Test
Mononucleosis Rapid Test
New
Chlamydia Trachomatis Assay
Chlamydia Trachomatis IgG
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.