We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Tumors Avoid Destruction by Immune System

By LabMedica International staff writers
Posted on 19 Feb 2018
Print article
Image: A mouse tumor (grey/white areas) being infiltrated by cDC1 (yellow cells) that exited from blood vessels (blue). Red and green identify other immune cells. Infiltration by cDC1 triggers anti-cancer immune responses; this tumor will eventually be rejected by the mouse\'s immune system (Photo courtesy of Dr. Caetano Reis e Sousa, The Francis Crick Institute).
Image: A mouse tumor (grey/white areas) being infiltrated by cDC1 (yellow cells) that exited from blood vessels (blue). Red and green identify other immune cells. Infiltration by cDC1 triggers anti-cancer immune responses; this tumor will eventually be rejected by the mouse\'s immune system (Photo courtesy of Dr. Caetano Reis e Sousa, The Francis Crick Institute).
A molecular and pathway that aids tumors in avoiding destruction by the immune system was found to comprise natural killer cells, conventional type 1 dendritic cells, and prostaglandin E2.

Conventional type 1 dendritic cells (cDC1) are critical to a tumor's ability to avoid destruction by the immune system. In this regard, investigators at The Francis Crick Institute (London, United Kingdom) found that cDC1 accumulation in mouse tumors often depended on natural killer (NK) cells that produced the cDC1 chemoattractants CCL5 and XCL1. Similarly, in human cancers, CCL5, XCL1, and XCL2 transcripts within tumors were found to correlate closely with gene signatures of both NK cells and cDC1 and were associated with increased over all patient survival.

In a recent paper published in the February 8, 2018, online edition of the journal Cell, the investigators extended these findings by reporting that tumor-derived prostaglandin E2 (PGE2) impaired NK cell and cDC1 attraction, which resulted in improved ability of the cancer to avoid immune response.

"Our findings have given us a renewed appreciation of the importance of natural killer cells and cDC1 in the immune response against cancer," said senior author Dr. Caetano Reis e Sousa, Senior Group Leader at the Francis Crick Institute. "It is still early days, but attracting more cDC1 to tumors could be the basis of a new immunotherapy for cancer patients. Now that we know a bit better how this key anti-cancer response works, we can look at identifying other ways in which cancers get around it. This understanding will ultimately help us to develop new immunotherapy approaches to help more patients."

Related Links:
The Francis Crick Institute

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Creatine Kinase-MB Assay
CK-MB Test
New
Blood Gas and Chemistry Analysis System
Edan i500

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.