We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Modified Adenovirus Vector Used for Cancer Gene Therapy

By LabMedica International staff writers
Posted on 15 Feb 2018
A team of medical virologists has modified the commonly used adenovirus vector to both avoid clearance by the immune system and liver and to specifically target and invade tumor cells.

The clinical application of most systemic viral gene therapies has been limited by the efficient neutralization of the viruses by the immune system and their rapid elimination by the liver. More...
Furthermore, adenovirus has been of little use in the realm of cancer therapy, as this virus does not normally invade tumor cells.

Investigators at the University of Zurich (Switzerland) developed a "work-around" to empower an adenovirus vector for use as a carrier for cancer gene therapy. They engineered a high-affinity protein coat that shielded the most commonly used vector in clinical gene therapy, human adenovirus type 5. Using electron microscopy and crystallography they demonstrated a massive coverage of the virion surface through the hexon-shielding scFv fragment, which was trimerized to exploit the hexon symmetry and gain avidity. In addition, the shield reduced virion clearance in the liver.

When the shielded particles were equipped with adaptor proteins, the virions delivered their payload genes into human cancer cells expressing the HER2 or EGFR surface proteins.

The investigators further reported in the January 31, 2018, online edition of the journal Nature Communications that the combination of shield and adapter also increased viral gene delivery to xenografted tumors in vivo, reduced liver off-targeting, and minimized immune neutralization.

"With this gene shuttle, we have opened up many avenues to treat aggressive cancers in the future, since we can make the body itself produce a whole cocktail of therapeutics directly in the tumor," said senior author Dr. Andreas Plueckthun, professor of biochemistry at the University of Zurich.

Related Links:
University of Zurich


New
Gold Member
Latex Test
SLE-Latex Test
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Alpha-Fetoprotein Reagent
AFP Reagent Kit
New
STI Test
RIDA GENE STI Mycoplasma Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The POC device rapidly predicts neonatal respiratory disease at birth in the NICU (Photo courtesy of SIME Diagnostics)

AI-Powered Lung Maturity Test Identifies Newborns at Higher Risk of Respiratory Distress

Each year, approximately 300,000 babies in the United States are born between 32 and 36 weeks' gestation, according to national health data. This group is at an elevated risk for respiratory distress,... Read more

Molecular Diagnostics

view channel
Image: Early prediction of preterm birth in cell-free RNA could revolutionize prevention strategies (Photo courtesy of 123RF)

Blood Cell-Free RNA Signatures Can Predict Preterm Birth Four Months Before Delivery

Every year, around 13.4 million babies are born prematurely worldwide, accounting for roughly one in ten of all live births. Of these, nearly one million preterm infants die annually, and preterm birth... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Pathology

view channel
Image: Results of AI-based 3D virtual H&E staining and quantitative analysis of pathological tissue (Photo courtesy of Nature Communications, DOI:10.1038/s41467-025-59820-0)

Virtual Staining Technology Paves Way for Non-Invasive Pathological Diagnosis

For more than 200 years, traditional pathology has depended on the technique of examining cancer tissues under a microscope, a method that provides only limited, specific cross-sections of the 3D structure... Read more

Technology

view channel
Image: Scanning electron microscopy images showing 3D micro-printed Limacon-shaped whispering-gallery-mode microcavities with different amounts of deformation (Photo courtesy of A. Ping Zhang/PolyU)

Tiny Microlaser Sensors with Supercharged Biosensing Ability to Enable Early Disease Diagnosis

Optical whispering-gallery-mode microlaser sensors function by trapping light within tiny microcavities. When target molecules bind to the cavity, they induce subtle changes in the laser’s frequency, allowing... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.