We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Coating Increases Clinical Utility of Cardiac Stem Cells

By LabMedica International staff writers
Posted on 22 Jan 2018
Print article
Image: Cardiac stem cells (magenta) decorated with platelet vesicles (brown) (Photo courtesy of North Carolina State University).
Image: Cardiac stem cells (magenta) decorated with platelet vesicles (brown) (Photo courtesy of North Carolina State University).
The effectiveness of cardiac stem cells for repairing heart disease damage is dramatically increased when the cells are covered with a coating of platelet adhesion molecules.

Stem cell transplantation, as used clinically, suffers from low retention and engraftment of the transplanted cells. Inspired by the ability of platelets to recruit stem cells to sites of injury on blood vessels, investigators at North Carolina State University (Raleigh, USA) hypothesized that platelets might enhance the vascular delivery of cardiac stem cells (CSCs) to sites of myocardial infarction injury.

To test this hypothesis, the investigators generated cardiac stem cells and then covered their surface membranes with nanovesicles prepared from platelet adhesion glycoprotein molecules.

The investigators reported in the January 10, 2018, online edition of the journal Nature Biomedical Engineering that CSCs with platelet nanovesicles fused onto their surface membranes expressed platelet surface markers that were associated with platelet adhesion to injury sites. The modified CSCs selectively bound collagen-coated surfaces and endothelium-denuded rat aortas, and in rat and pig models of acute myocardial infarction the modified CSCs increased retention in the heart and reduced infarct size.

“Platelets can home in on an injury site and stay there, and even in some cases recruit a body’s own naturally occurring stem cells to the site, but they are a double-edged sword,” said senior author Dr. Ke Cheng, associate professor of veterinary medicine at North Carolina State University. “That is because once the platelets arrive at the site of injury, they trigger the coagulation processes that cause clotting. In a heart-attack injury, blood clots are the last thing that you want.”

“The nanovesicle is like the platelet’s coat,” said Dr. Cheng. “There is not any internal cellular machinery that could activate clotting. When you place the nanovesicle on the stem cell, it is like giving the stem cell a tiny GPS that helps it locate the injury so it can do its repair work without any of the side effects associated with live platelets. Platelet nanovesicles do not affect the performance of the cardiac stem cells, and are free from any negative side effects. Hopefully we will be able to use this approach to improve cardiac stem cell therapy in clinical trials in the future.”

Related Links:
North Carolina State University

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total Thyroxine Assay
Total Thyroxine CLIA Kit
New
Nutating Mixer
Enduro MiniMix

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.