We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Oligonucleotide Treatment Reduces Neurological Damage in Alzheimer's Model

By LabMedica International staff writers
Posted on 18 Dec 2017
Neurological damage in mice that had been genetically engineered to express human apolipoprotein E4 (APOE4) - a gene linked to increased risk of developing Alzheimer's disease - was significantly reduced by treatment with an antisense oligonucleotide.

The apolipoprotein E gene is the strongest genetic risk factor for late-onset Alzheimer's disease. More...
Previous studies suggested that reduction of apoE protein levels through genetic manipulation could reduce the pathology of the disease's Abeta plaques. However, it was not demonstrated how reduction of apoE levels after birth would affect amyloid deposition.

To study the mechanism of apoE toxicity, investigators at Washington University School of Medicine (St. Louis, MO, USA) utilized an antisense oligonucleotide (ASO) to reduce apoE expression in the brains of APP/PS1-21 mice homozygous for the human APOE-epsilon4 or APOE-epsilon3 allele. The ASO or a suitable control material was injected into the brains of mice that were either newly born or of six weeks of age.

The investigators reported in the December 6, 2017, online edition of the journal Neuron that ASO treatment starting after birth led to a significant decrease in Abeta pathology when assessed at four months. In contrast, ASO treatment starting at six weeks - at the onset of amyloid deposition - led to an increase in Abeta plaque size and a reduction in plaque-associated neuron damage with no change in overall plaque load.

"Scientists have been interested in APOE for years but there are only a few examples where researchers have targeted it with a compound in living animals," said senior author Dr. David Holtzman, professor of neurology at Washington University School of Medicine. "Our findings indicate that APOE is not just involved in Alzheimer's risk and disease progression, but it could potentially be a real target for treatment or prevention."

"If you wanted to target APOE to affect the amyloid process, the best thing would be to start before the plaques form," said Dr. Holtzman. "But even if you start later, you still may reduce the amount of damage caused by the plaques. Now that we have shown that it is possible to target APOE, we can start figuring out the best way to do it."

Related Links:
Washington University School of Medicine


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Homocysteine Quality Control
Liquichek Homocysteine Control
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.