We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel Approach for Treating Diabetes Based on Artificial Beta Cells

By LabMedica International staff writers
Posted on 14 Nov 2017
A possible long-term approach for treating diabetes could be based on a novel type of artificial pancreatic beta cells capable of releasing insulin in response to elevated levels of glucose.

Generating artificial pancreatic beta cells by using synthetic materials to mimic glucose-responsive insulin secretion holds promise for improving treatment in people with diabetes. More...
Towards this end, investigators at the University of North Carolina (Chapel Hill, USA) constructed artificial beta cells (AbetaCs) with a multi-compartmental "vesicles-in-vesicle" internal structure that were equipped with a glucose-metabolism system and membrane-fusion machinery. Through a sequential cascade of glucose uptake, enzymatic oxidation, and proton efflux, the AbetaCs could effectively distinguish between high and normal glucose levels.

The investigators reported in the October 30, 2017, online edition of the journal Nature Chemical Biology that under hyperglycemic conditions, high glucose uptake and oxidation generated an environment of low pH (below 5.6). This acidic condition induced the steric uncovering of peptides bound to the insulin-loaded inner small liposomal vesicles. The peptides on the small vesicles then interacted with complementary peptides anchored on the inner surfaces of the large vesicles, thus bringing the membranes of the inner and outer vesicles together and triggering their fusion and subsequent release of insulin.

The investigators further reported that a single injection of the AbetaCs into diabetic mice that lacked beta cells quickly normalized the animals’ blood glucose levels and kept those levels normal for up to five days. Control mice injected with AbetaCs that did not contain insulin remained hyperglycemic.

“The mice went from hyperglycemic to normoglycemic within an hour, and they remained normoglycemic for up to five days after that,” said senior author Dr. Zhen Gu, professor of medicine at the University of North Carolina “Our plan now is to further optimize and test these synthetic cells in larger animals, develop a skin patch delivery system for them, and ultimately test them in people with diabetes.”

Related Links:
University of North Carolina


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Urine Chemistry Control
Dropper Urine Chemistry Control
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.