We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel Antimicrobial Role of Intracellular Organelle

By LabMedica International staff writers
Posted on 30 Aug 2017
A recent study illustrated the importance of cellular organelles called peroxisomes to the ability of macrophages to internalize and destroy pathogenic microorganisms through phagocytosis.

Peroxisomes are organelles found in virtually all eukaryotic cells. More...
They are involved in catabolism of very long chain fatty acids, branched chain fatty acids, D-amino acids, and polyamines, reduction of reactive oxygen species – specifically hydrogen peroxide – and biosynthesis of plasmalogens, i.e., ether phospholipids critical for the normal function of mammalian brains and lungs. They also contain approximately 10% of the total activity of two enzymes in the pentose phosphate pathway, which is important for energy metabolism

Investigators at the University of Alberta Faculty of Medicine & Dentistry (Edmonton, Canada) worked with cultures of Drosophila (fruit fly) and mouse macrophages. They reported in the July 18, 2017, issue of the journal Immunity that peroxisomes were necessary for the engulfment of bacteria by these macrophages. Peroxisomes were also required for resolution of bacterial infection through canonical innate immune signaling. Reduced peroxisome function impaired the turnover of the oxidative burst necessary to fight infection.

The investigators also showed that peroxisomes could transmit to other organs evidence that an infection was in progress. Failure of the organelle to function interrupted this communication and the organism did not fight the pathogen.

"To find organelles like peroxisomes that had no link whatsoever to fighting bacterial infections was a critical discovery - it will help expand the roles of what this important organelle does in innate immunity against bacterial and fungi, and its involvement in viral signaling and the lethal peroxisome genetic diseases," said contributing author Dr. Richard Rachubinski, professor of cell biology at the University of Alberta Faculty of Medicine & Dentistry. "As the threat of bacterial infections continues to grow, this discovery can help move our understanding of immunity forward."

Related Links:
University of Alberta Faculty of Medicine & Dentistry


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
ESR Analyzer
TEST1 2.0
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.