We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Statins Slow Growth of Cancers with p53 Structural Mutations

By LabMedica International staff writers
Posted on 08 Feb 2017
Cancer researchers have demonstrated the ability of cancer-lowering statin drugs to slow the growth of certain types of cancers with p53 mutations.

Most cancers fail to propagate unless the p53 gene is inactivated through mutation, or if the p53 protein becomes inactivated. More...
Investigators at the University of Kansas Medical Center looked for chemical compounds that could inhibit the activity of structurally mutated p53 proteins that can accelerate cancer progression, while not harming proteins produced by healthy p53 genes.

Toward this end, the investigators screened nearly 9,000 compounds - including 2,400 that were [U.S.] Food and Drug Administration-approved drugs – to identify any that might degrade mutant p53.

The investigators reported in the November 2016 issue of Nature Cell Biology that statins, cholesterol-lowering drugs such as Lipitor (atorvastatin), Crestor (rosuvastatin) and Mevacor (lovastatin), were degradation inducers for conformational or misfolded p53 mutants with minimal effects on wild-type p53 (wtp53) and DNA contact mutants. The statins impacted only structurally mutated (misfolded) p53, as opposed to p53 mutated at the site of DNA binding.

Statins act by competitively inhibiting the enzyme HMG-CoA reductase, the first committed enzyme of the mevalonate pathway. Because statins are similar in structure to HMG-CoA on a molecular level, they fit into the enzyme's active site and compete with the native substrate (HMG-CoA). This competition reduces the rate by which HMG-CoA reductase is able to produce mevalonate, the next molecule in the cascade that eventually produces cholesterol. By inhibiting HMG-CoA reductase, statins block the pathway for synthesizing cholesterol in the liver.

In the current study, the investigators found that specific reduction of mevalonate-5-phosphate by statins induced CHIP (C terminus of HSC70-Interacting Protein) ubiquitin ligase-mediated nuclear export, ubiquitylation, and degradation of mutated p53 by impairing interaction of this protein with DNAJA1 (DNAJ heat shock protein family (Hsp40) member A1). DNAJA1 a member of the DNAJ family of proteins, which act as heat shock protein 70 co-chaperones. Heat shock proteins facilitate protein folding, trafficking, prevention of aggregation, and proteolytic degradation. Members of this family are characterized by a highly conserved N-terminal J domain, which mediates the interaction with heat shock protein 70 to recruit substrates and regulate ATP hydrolysis activity. Knockdown of DNAJA1 induced CHIP-mediated mutated p53 degradation, while its overexpression prevented statin-induced degradation of this protein.

In a study in which mice carrying human tumors expressing mutant p53, were treated with high doses of statins for 21 days, it was found that the tumors grew poorly in mice treated with statins compared to the controls, and that the statins worked only on structurally mutated p53, as opposed to p53 mutated at the site of DNA binding.

"We found that only the structural mutation is affected," said senior author Dr. Tomoo Iwakuma, associate professor of cancer biology at the University of Kansas Medical Center. "Which explains why clinical studies with statins were inconclusive. Mutant p53 makes human cancer cells more metastatic and resistant to chemotherapy. That is a primary reason to get rid of it -- to improve survival in cancer patients."


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Collection and Transport System
PurSafe Plus®
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
New
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study highlights the potential of cCAFs as a biomarker for early diagnosis and prognosis (H J Woo et al., Analytical Chemistry (2025). DOI: 10.1021/acs.analchem.5c02154)

Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy

Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.