We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel Graft Material Grows with Young Transplant Recipients

By LabMedica International staff writers
Posted on 11 Oct 2016
In a "proof-of-concept" paper, a team of biomedical engineers described a novel "off-the shelf" material for grafting blood vessels that is able to grow and mature along with the young patient recipients.

Treatment of congenital heart defects in children requiring right ventricular outflow tract reconstruction typically involves multiple open-heart surgeries because all existing graft materials have no growth potential. More...
In an attempt to develop a type of graft material that would grow along with the recipient, investigators at the University of Minnesota (Minneapolis/St. Paul, USA) worked with a young sheep model.

The graft material was produced by growing donor sheep skin cells in fibrin-based gelatin tubes maintained in bioreactors with pumping of nutrients necessary for cell growth. Pumping provided both nutrients and stimulation to strengthen and stiffen the tubes. After five weeks of growth, detergents were used to wash away the sheep cells, leaving behind a cell-free matrix that would not cause a immune reaction when implanted.

The decellularized material was characterized, stored, and then implanted into three lambs (average age eight weeks), tracked longitudinally with ultrasound, and then explanted after the lambs reach adult size (age 50 weeks) for mechanical, biochemical, and histological characterization.

Results published in the September 27, 2016, online edition of the journal Nature Communications revealed that the lambs showed normal growth, increasing body weight by 366% and graft diameter and volume by 56% and 216%, respectively. Explanted grafts displayed physiological strength and stiffness, complete lumen endothelialization, and extensive population by mature smooth muscle cells. The grafts also showed substantial elastin deposition and a 465% increase in collagen content, without signs of calcification, aneurysm, or stenosis.

“What is important is that when the graft was implanted in the sheep, the cells repopulated the blood vessel tube matrix,” said senior author Dr. Robert Tranquillo, professor of biomedical engineering at the University of Minnesota. “If the cells do not repopulate the graft, the vessel cannot grow. This is the perfect marriage between tissue engineering and regenerative medicine where tissue is grown in the lab and then, after implanting the decellularized tissue, the natural processes of the recipient’s body make it a living tissue again. This might be the first time we have an ‘off-the-shelf’ material that doctors can implant in a patient, and it can grow in the body. In the future, this could potentially mean one surgery instead of five or more surgeries that some children with heart defects have before adulthood.”

Related Links:
University of Minnesota



Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Capillary Blood Collection Tube
IMPROMINI M3
Homocysteine Quality Control
Liquichek Homocysteine Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: LiDia-SEQ aims to deliver near-patient NGS testing capabilities to hospitals, labs and clinics (Photo courtesy of DNAe)

World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device

Rapid point-of-need diagnostics are of critical need, especially in the areas of infectious disease and cancer testing and monitoring. Now, a direct-from-specimen platform that performs genomic analysis... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.