We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




3D Bioengineering Generates Lung Tissue for Personalized Disease Modeling

By LabMedica International staff writers
Posted on 28 Sep 2016
Lung disease researchers have developed a novel three-dimensional (3D) culture method for transforming stem cells into lung-like tissue that can be used to study diseases including idiopathic pulmonary fibrosis (IPF), which has traditionally been difficult to study using conventional methods.

Investigators at the University of California, Los Angeles (USA) reported in the September 15, 2016, online edition of the journal Stem Cells Translational Medicine that they had coated hydrogel microbeads with stem cells taken from adult lungs. More...
The coated beads were cultured in microwells where they developed into miniature lung organoids. These structures could be modified to contain multiple lung cell types assembled into the correct anatomical location, thereby allowing cell-cell contact and recapitulating the lung microenvironment.

Treatment of lung organoids with transforming growth factor-beta-1 resulted in morphologic scarring typical of that seen in IPF but not seen in two-dimensional (2D) IPF fibroblast cultures. IPF is a chronic lung disease characterized by scarring of the lungs. The scarring makes the lungs thick and stiff, which over time results in progressively worsening shortness of breath and impaired transport of oxygen to the brain and vital organs.

"While we have not built a fully functional lung, we have been able to take lung cells and place them in the correct geometrical spacing and pattern to mimic a human lung," said senior author Dr. Brigitte Gomperts, associate professor of pediatric hematology/oncology at the University of California, Los Angeles. "This is the basis for precision medicine and personalized treatments."

Related Links:
University of California, Los Angeles



Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.