We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Role of Laminin Defined in Muscular Dystrophy-Related Stem Cell Differentiation

By LabMedica International staff writers
Posted on 13 Jun 2016
The structural protein laminin has been found to play a critical role in determining whether a class of stem cells linked to the development of muscular dystrophy (MD) matures into muscle – which could prevent development of MD – or into fat – which would contribute to the development of MD.

Muscle-resident PDGFRbeta+ cells, which include pericytes and PW1+ interstitial cells (PICs), play a dual role in muscular dystrophy. More...
They can either undergo myogenesis (generation of muscle cells) to promote muscle regeneration or differentiate into adipocytes (fat cells) and other cells to compromise regeneration and drive MD development. However, the factors that regulate the differentiation and fate determination of PDGFRbeta+ cells had not previously been determined. However, previous studies with mouse models had shown that loss of the structural protein laminin contributed to at least some forms of muscular dystrophy.

Investigators at the Rockefeller University (New York, NY, USA) worked with a model system based on genetically engineered conditional knockout mice with laminin deficiency in PDGFRbeta+ cells.

The investigators reported in the May 3, 2016, online edition of the journal Nature Communications that treatment with laminin alone was able to partially reverse the muscle dystrophic phenotype in these mice at the molecular, structural, and functional levels. RNAseq analysis revealed that laminin regulated PDGFRbeta+ cell differentiation and fate determination via the protein gpihbp1 (Glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1). This protein is found primarily in capillaries where pericytes reside, and previous research had shown that it was involved in fat metabolism.

Forcing mouse pericytes and PICs that lacked laminin to activate gpihbp1 caused these cells to differentiate preferentially into muscle cells.

"Our data suggests that gpihbp1 could be a novel target for the treatment of muscular dystrophy," said senior author Dr. Sidney Strickland, professor of neurobiology and genetics at the Rockefeller University.

Related Links:
Rockefeller University



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic CLIA Analyzer
Shine i9000
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.