We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Defective Genome Instability Suppressing Genes May Cause Some Types of Cancer

By LabMedica International staff writers
Posted on 28 Apr 2016
Cancer researchers reported in a recent study that defects in the expression of genes that suppress gross chromosomal rearrangements (GCRs) were linked to more than 93% of the ovarian and 66% of the colorectal cancer cases they had examined.

Investigators at the University of California, San Diego (USA) worked with the yeast Saccharomyces cerevisiae to identify genome instability suppressing (GIS) genes that acted to prevent chromosomal rearrangements. More...
They reported in the April 13, 2016, online edition of the journal Nature Communications that by using this platform they had been able to identify182 GIS genes that suppressed GCR formation. Another 438 cooperatively acting GIS genes (cGIS) were identified that were not GIS genes, but suppressed the increased genome instability caused by individual query mutations.

Analysis of data derived from The Cancer Genome Atlas (TCGA) allowed the investigators to predict which human genes were associated with GIS pathways. This analysis revealed that a minimum of 93% of ovarian and 66% of colorectal cancer cases had defects affecting one or more predicted GIS gene. These defects included loss-of-function mutations, copy-number changes associated with reduced expression, and silencing. In contrast, acute myeloid leukemia cases did not appear to have defects affecting the predicted GIS genes.

"Mutated GIS genes have long been suspected of playing a role in the development of many types of cancers, but identifying them has been difficult due in large part to a lack of comprehensive GCR tests, or assays, in mammalian systems," said first author Dr. Christopher Putnam, adjunct assistant professor of medicine at the University of California, San Diego School of Medicine. "Before our experiment, only a few dozen cGIS genes were known. Now we know of hundreds. Understanding this process allows us to think more about how carcinogenesis proceeds and it might give us insights into defects that could be therapeutically actionable in the future."

Related Links:
University of California, San Diego


Gold Member
Hematology Analyzer
Medonic M32B
Collection and Transport System
PurSafe Plus®
New
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
New
Gold Member
Hybrid Pipette
SWITCH
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.