We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Researchers Define the Structure of Parkinson's Disease Protein Aggregates

By LabMedica International staff writers
Posted on 12 Apr 2016
The use of advanced imaging techniques has enabled biochemists to determine the molecular structure of alpha-synuclein protein fibrils such as those found in the brains of individuals with Parkinson's disease.

The accumulation of misfolded alpha-synuclein amyloid fibrils leads to the formation of insoluble aggregates that have been implicated in several neurodegenerative diseases, including Parkinson's disease, dementia with Lewy bodies, and Alzheimer's disease. More...
It has been exceedingly difficult to define the structure of alpha-synuclein fibrils due to their insolubility and complexity.

Investigators at the University of Illinois (Champaign-Urbana, USA) and their collaborators used advanced imaging techniques such as magic-angle spinning nuclear magnetic resonance (a type of solid state NMR) to measure the placement of atoms in samples of alpha-synuclein.

They described in the March 28, 2016, online edition of the journal Nature Structural and Molecular Biology a structure with common amyloid features including parallel, in-register beta-sheets and hydrophobic-core residues. The structure revealed substantial complexity arising from diverse structural features including an intermolecular salt bridge, a glutamine ladder, close backbone interactions involving small residues, and several steric zippers stabilizing a new orthogonal Greek-key topology. The results were validated using EM (electron microscope) and X-ray fiber diffraction.

The investigators synthesized alpha-synuclein fibrils according to their structural data and showed that these fibrils induced robust Parkinson's-like pathology in primary neuronal cultures.

"We had to find patterns in the data and systematically test all the possibilities for how the protein would fit together," said senior author Dr. Chad Rienstra, professor of chemistry at the University of Illinois. "It is like when you solve a really complex puzzle, you know you have it right at the end because all the pieces fit together. That is what we got with this structure. This is the first structure of the full-length fibril protein, which is now well established to be important for the pathology of Parkinson's disease. Knowing that structure will open up many new areas of investigation for diagnosing and treating Parkinson's disease."

"We think that the structure that we resolved of alpha-synuclein fibrils will be really significant in the immediate future and has use for diagnosing Parkinson's in patients before they are symptomatic," said Dr. Rienstra. "Once people start having symptoms, whether of Alzheimer's or Parkinson's, in many ways it is a little too late to be effective with therapy. But if you catch it early, I think there is a lot of promise for therapies that are being developed. Those are all relying upon the structures that we are solving."

Related Links:

University of Illinois



Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Pipette
Accumax Smart Series
Gold Member
Hybrid Pipette
SWITCH
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The new analysis of blood samples links specific protein patterns to five- and ten-year mortality risk (Photo courtesy of Adobe Stock)

Blood Protein Profiles Predict Mortality Risk for Earlier Medical Intervention

Elevated levels of specific proteins in the blood can signal increased risk of mortality, according to new evidence showing that five proteins involved in cancer, inflammation, and cell regulation strongly... Read more

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.