We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Prolonged Cell Division Arrest Prevents Development of Cancers Caused by Epstein-Barr Virus

By LabMedica International staff writers
Posted on 02 Feb 2016
A mechanism has been identified that helps explain why despite most people having been infected with Epstein-Barr virus (EBV), very few develop the lymphomas and other cancers the virus can cause.

EBV was the first human tumor virus discovered. More...
Although nearly all adults are infected with EBV, very few go on to develop disease, for reasons that are only now beginning to be understood.

Infection with EBV induces a period of very rapid cell division, which requires an increased supply of metabolites, such as nucleotides, amino acids, and lipids. Investigators at Duke University (Durham, NC, USA) found that EBV-infected cells that were unable to meet this increased metabolic demand were forced to stop proliferating and underwent a permanent growth arrest called senescence.

They reported in the January 22, 2016, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that arrested cells had a reduced level of mitochondrial respiration and a decrease in the expression of genes involved in the TCA (Kreb's) cycle and oxidative phosphorylation. Furthermore, the growth arrest in early infected cells could be rescued by supplementing the TCA cycle. Arrested cells were characterized by an increase in the expression of p53 pathway gene targets, including sestrins. Increased sestrin expression led to activation of AMPK (5' AMP-activated protein kinase), a reduction in mTOR (mammalian target of rapamycin) signaling, and, consequently, elevated autophagy that was important for cell survival.

In assessing the metabolic changes from early infection to long-term outgrowth, the investigators found concomitant increases in glucose import and surface glucose transporter 1 (GLUT1) levels, leading to elevated glycolysis, oxidative phosphorylation, and suppression of basal autophagy.

Senior author Dr. Micah Luftig, associate professor of molecular genetics and microbiology at Duke University, said, "For the most part, a healthy immune system stops Epstein-Barr virus from making much headway. In fact, many of the cancers linked to EBV are found mostly in immune-compromised patients whose ability to fight it off has been weakened. But another answer may be this newly discovered senescence trigger."

Related Links:

Duke University 



New
Gold Member
Hematology Analyzer
Medonic M32B
Collection and Transport System
PurSafe Plus®
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.