Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Nanovesicles Coated with Platelet Membranes Target Cancer Cells and Reduce Doxorubicin Toxicity

By LabMedica International staff writers
Posted on 14 Oct 2015
A novel delivery system for the toxic chemotherapeutic drug doxorubicin (Dox) utilizes nanovesicles coated with extracted platelet membranes and the cytokine TRAIL.

Although in use for more than 40 years as a primary chemotherapy drug, Dox is known to cause serious heart problems. More...
To prevent these, doctors may limit the amount of Dox given to each patient so that the total amount a patient receives over her or his entire lifetime is 550 milligrams per square meter, or less. Furthermore, the necessity to stop treatment to protect the patient from heart disease may diminish the usefulness of Dox in treating cancer. TRAIL is a cytokine that is produced and secreted by most normal tissue cells. It causes apoptosis primarily in tumor cells by binding to certain death receptors. Since the mid-1990s it has been used as the basis for several anticancer drugs, but was not been found to have any significant survival benefit.

Platelet membranes are a source of P-selectin proteins, which function as cell adhesion molecules (CAMs) on the surfaces of activated endothelial cells, which line the inner surface of blood vessels, and activated platelets.

Investigators at North Carolina State University (Raleigh, USA) and the University of North Carolina (Chapel Hill, USA) incorporated Dox into spherical nanovesicle gels that were subsequently coated with extracted platelet membranes and TRAIL.

The P-selectin proteins on the platelet membrane were expected to bind to CD44 proteins on the surface of cancer cells, locking the vesicles into place. TRAIL on the surface of the vesicles would attack the cancer cell membrane, and after ingestion of the nanovesicles by the cancer cells, the acidic environment inside the cells would break down the vesicles, freeing Dox to interfere with the cancer cells' nuclei. The platelet membrane-coated nanovesicles were able to survive in the circulation for up to 30 hours, as compared to approximately 6 hours for vehicles without the coating.

In a study using mice that was published in the September 29, 2015, online edition of the journal Advanced Materials, the investigators reported that the use of Dox and TRAIL in this drug delivery system was significantly more effective against large tumors and circulating tumor cells than using Dox and TRAIL in a nano-gel delivery system without the platelet membrane component.

"There are two key advantages to using platelet membranes to coat anticancer drugs," said senior author Dr. Zhen Gu assistant professor in the joint biomedical engineering program at North Carolina State University and the University of North Carolina. "First, the surface of cancer cells has an affinity for platelets - they stick to each other. Second, because the platelets come from the patient's own body, the drug carriers are not identified as foreign objects, so last longer in the bloodstream. We would like to do additional preclinical testing on this technique, and we think it could be used to deliver other drugs, such as those targeting cardiovascular disease, in which the platelet membrane could help us target relevant sites in the body."

Related Links:

North Carolina State University
University of North Carolina



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.