We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Beta-Blockers Enhance the Pro-Survival Function of Mef2 in Post-Heart Attack Cardiomyocytes

By LabMedica International staff writers
Posted on 28 Sep 2015
Cardiac disease researchers have found that beta-blockers such as Atenolol act to prevent cell death following a heart attack by enhancing the activity of myocyte enhancer factor 2 (Mef2) proteins, which function as important regulators of myocardial gene expression.

In adult tissues, Mef2 proteins regulate the stress-response during cardiac hypertrophy and tissue remodeling in cardiac and skeletal muscle. More...
Investigators at York University (Toronto, Canada) had shown previously that MEF2 gene activity was suppressed by beta1-adrenergic receptor (beta1-AR) stimulation, which after heart attack, increased apoptosis in cardiomyocytes through activation of cAMP/protein kinase A (PKA) signaling.

The adrenergic receptors (subtypes alpha 1, alpha 2, beta 1, and beta 2) are a prototypic family of guanine nucleotide binding regulatory protein-coupled receptors that mediate the physiological effects of the hormone epinephrine and the neurotransmitter norepinephrine. Specific polymorphisms in this gene have been shown to affect the resting heart rate and can be involved in heart failure. In addition, flow cytometry identified siRNA-mediated gene silencing of MEF2 as inducing cardiomyocyte apoptosis.

In a follow-up study published in the September 14, 2015, online edition of the journal Cell Death Discovery, the investigators reported that beta1-AR-mediated apoptosis was abrogated in cardiomyocytes expressing a PKA-resistant form of MEF2. They also showed that a beta1-blocker, Atenolol, antagonized the apoptosis pathway while concomitantly enhancing MEF2 transcriptional activity. Beta-AR stimulation modulated MEF2 cellular localization in cardiomyocytes, and this effect was reversed by beta-blocker treatment. Furthermore, Kruppel-like factor 6 (KFL6), a MEF2 target gene in the heart, functioned as a downstream pro-survival factor in cardiomyocytes.

Collectively, these data indicated that (a) MEF2 had an important pro-survival role in cardiomyocytes, and (b) beta-adrenergic signaling antagonized the pro-survival function of MEF2 in cardiomyocytes and beta-blockers promoted it.

Senior author Dr. John McDermott, professor of biology at York University, said, "An initial clue was the accumulating evidence that the primary function of the MEF2 protein complex in neurons is to protect them from dying off. We suspected that these proteins might play a similar role in the heart."

Related Links:

York University



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gel Cards
DG Gel Cards
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.