We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Salvage of DNA Precursors Is Lethal to Some Cancer Cells

By LabMedica International staff writers
Posted on 04 Aug 2015
Cancer cells overexpress the enzyme cytidine deaminase (CDA), which allows them to recycle inappropriate DNA precursors but renders them susceptible to genetic damage and cell death.

Cells require nucleotides to support DNA replication and repair damaged DNA. More...
In addition to making these DNA precursors from scratch, cells recycle nucleotides from the DNA of dying cells or from cellular material ingested through the diet. However, salvaged nucleotides come with the complication that they can contain epigenetic modifications such as being methylated or phosphorylated.

In humans, cytidine deaminase is an enzyme involved in pyrimidine salvaging that is encoded by the CDA gene. This protein forms a homotetramer that catalyzes the irreversible hydrolytic deamination of cytidine and deoxycytidine to uridine and deoxyuridine, respectively. It is one of several deaminases responsible for maintaining the cellular pyrimidine pool. Mutations in this gene are associated with decreased sensitivity to the cytosine nucleoside analogue cytosine arabinoside used in the treatment of certain childhood leukemias.

Investigators at the University of Oxford (United Kingdom) reported in the July 22, 2015, online edition of the journal Nature that in normal cells the enzymes of the nucleotide salvage pathway displayed substrate selectivity, effectively protecting newly synthesized DNA from the incorporation of epigenetically modified forms of cytosine. Thus, cell lines and animals could tolerate high doses of these modified cytidines without any deleterious effects on physiology.

In contrast, by screening cancer cell lines for growth defects after exposure to 5hmdC (5-hydroxymethyl-2′deoxycytidine), the investigators unexpectedly identified a subset of cell lines in which 5hmdC or 5fdC (5-formy-2′deoxycytidine) led to cell death. Using genomic approaches, they showed that the susceptible cell lines overexpressed CDA. CDA converted 5hmdC and 5fdC into variants of uridine that were incorporated into DNA, resulting in accumulation of DNA damage, and ultimately, cell death.

"In the past few years we and others discovered a new set of biological DNA modifications. In the current study, our research group sought to find out what happens to these modified bases when DNA is recycled," said senior author Dr. Skirmantas Kriaucionis, assistant member of the Ludwig Institute for Cancer Research at the University of Oxford. "We were excited that our biochemical analysis uncovered "loopholes," which we hope can be exploited for intervention in cancer. It has been suggested that CDA inactivates cytidine analogues that are already used in the clinic to treat some blood and pancreatic cancers. In a strikingly reverse scenario, the nucleotides that we used in our study are relatively harmless until they encounter CDA, which converts them into hostile cytotoxic agents."

Related Links:

University of Oxford



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Serological Pipet Controller
PIPETBOY GENIUS
New
Integrated Biochemical & Immunological System
Biolumi CX8
New
Host Response Immunoassay Test
MeMed BV
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.