Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Electron Microscopy Advance Rebuilds Third Dimension from Just One Image

By LabMedica International staff writers
Posted on 30 Sep 2014
Scientists have developed a new nanotechnology strategy with which crystal structures can be reconstructed with atomic precision in all three dimensions (3D).

Researchers have used an image from an ultrahigh resolution electron microscope. More...
The process is also especially suitable for the spatial mapping of radiation-sensitive samples, which would be quickly destroyed by the high energy measurement beam. The results were published on September 21, 2014, in the scientific journal Nature Materials.

A key feature of nanoparticles is that they differ from other types of substances in that their surface determines their physical and technical properties to a much larger degree. The effectiveness of catalysts, for instance, depends mostly on the shape of the materials used and their surface texture. For this reason, physicists and material scientists are interested in being able to determine the structure of nanomaterials from all angles and through several layers, right down to the last atom.

Until now, it was necessary to perform a whole series of tests from different angles to achieve this. However, scientists from the Forschungszentrum Jülich (Jülich Research Center; Jülich, Germany), the Jülich’s Ernst Ruska-Center for Microscopy and Spectroscopy with Electrons (ER-C), and Xi'an Jiaotong University (Xi'an, Shaanxi, China) have now succeeded for the first time in calculating the spatial arrangement of the atoms from just one image from an electron microscope.

Their approach offers many benefits: radiation-sensitive samples can also be examined, which would otherwise be rapidly damaged by the microscope’s high-energy electron beam. The comparatively short data acquisition time involved could even make it possible in the future to see the transient intermediate steps of chemical reactions. Furthermore, it enables a “gentle” measurement procedure to take place, to detect not only heavy but also light chemical elements, such as oxygen, which have a vital function in many technologically important materials.

“Acquiring three-dimensional information from a single two-dimensional image seems impossible at first glance. Nevertheless, it is in fact possible: we don’t obtain a simple two-dimensional projection of the three-dimensional sample as the experiment follows quantum mechanical principles instead,” explained Prof. Chunlin Jia, a researcher from the Jülich Peter Grünberg Institute, in microstructure research (PGI-5), the ER-C and at Jiaotong University. “On its way through the crystal lattice, the electron wave of the microscope acts as a highly sensitive atom detector and is influenced by each individual atom. The key point is that it does actually make a difference whether the wave front encounters an atom at the beginning or at the end of its pathway through the crystal.”

For the new 3D measuring process, a thin crystalline sample, in this instance, magnesium oxide, is positioned in the microscope so that the atoms at the intersections of the crystal lattice lie precisely on top of one another, forming columns along the observation axes. These atom columns are later only visible as bright spots on the microscopic image. A special imaging mode is used to improve the signal-to-noise ratio. In this way, subtle variations are visible, which show the researchers the location of individual atoms in the columns along the beam direction.

To reconstruct the spatial structure, the scientists compared the image with calculations constructed on a computer. The computer simulations provide an idea of how a microscopic image of a completely flat magnesium oxide crystal would look. After this, they matched up the model crystal step by step until the reconstructed figure corresponds optimally with the image from the electron microscope.

To validate the findings, the scientists performed comprehensive statistical tests. These revealed that the strategy is not only sensitive enough to identify each individual atom, but also to distinguish between the magnesium and oxygen elements of the crystal.

Related Links:

Forschungszentrum Jülich
Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons 
Xi'an Jiaotong University



Gold Member
Hematology Analyzer
Medonic M32B
Portable Electronic Pipette
Mini 96
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Blood Glucose Test Strip
AutoSense Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.