We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Brain Tumors Grow by Tapping Preexisting Blood Vessels for Nutrients

By LabMedica International staff writers
Posted on 24 Aug 2014
Findings from a new study on how tumors grow and spread in the brain may cause cancer researchers to rethink treatment options based on drugs that block angiogenesis.

According to the angiogenesis theory, tumors that are more than one cubic millimeter in size need to attract or grow their own blood vessels to survive. More...
This theory led to clinical trials with anti-angiogenesis drugs such as bevacizumab and DC101. However, such clinical trials have failed to produce evidence of reduced tumor growth or increased patient survival.

Investigators at the University of Michigan (Ann Arbor, USA) examined this phenomenon in rodents and human cancer patients and by advanced computer modeling.

They reported in the July 2014 issue of the journal Neoplasia that implanted rodent and human brain cancer cells commonly invaded and proliferated within the brain perivascular space. This form of brain tumor growth and invasion was also shown to characterize de novo generated endogenous mouse brain tumors, biopsies of primary human glioblastoma, and peripheral cancer metastasis to the human brain.

Perivascularly invading brain tumors became vascularized by normal brain microvessels when individual glioma cells used perivascular space as a conduit for tumor invasion. Since the cancer cells were obtaining blood from already existing vascular tissues, their growth and spread were not impeded by treatment with antiangiogenic agents.

The experimental findings showing that tumor perivascular spreading was independent of growth of new blood vessels had been predicted by computational modeling. The investigators tested this prediction experimentally by blocking angiogenic signaling using antibodies targeting the VEGF-A (vascular endothelial growth factor) signaling axis. VEGF-A inhibitors failed to block progressive tumor growth or extend median survival in multiple brain tumor models.

"The key question has been to determine how tumor-generating cells grow to form the macroscopic tumor mass that eventually kills the patients," said senior author Dr. Pedro Lowenstein, professor of neurosurgery and cell and developmental biology at the University of Michigan. "We have shown that because of the very high density of endogenous vessels in the brain and central nervous system, the cells grow along those preexisting vessels and eventually divide to fill the space between them, where the distance between any two vessels is very small. This iterative growth along vessels and into the space between means the tumor does not grow like a balloon requiring new vessels to grow into its expanding mass to rescue it, but rather as an accumulation of local small masses which then coalesce into a large tumor."

Related Links:

University of Michigan



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Collection and Transport System
PurSafe Plus®
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
New
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.