We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Human Cell Line Produces High-Quality RSV for Vaccine Production

By LabMedica International staff writers
Posted on 23 Mar 2014
Cooperation between German and American biotechnology companies may pave the way for development of a vaccine to prevent RSV (respiratory syncytial virus) respiratory infections, which have been estimated to cause nearly 7% of the deaths of infants that die during their first year of life.

The companies involved are CEVEC Pharmaceuticals (Cologne, Germany), a clinical stage pharmaceutical company focusing on the development of highly potent protein and vaccine expression systems based on human CAP cells and Paragon Bioservices Inc. More...
(Baltimore, MD, USA), a leading American biopharmaceutical contract manufacturer.

CEVEC has developed a new and proprietary expression system for biopharmaceuticals offering significant advantages over existing production technologies. Their CAP cells are an immortalized cell line derived from primary human amniocytes that meet the highest ethical and regulatory standards. CEVEC´s CAP cells have proven highly efficient in the production of a broad range of otherwise difficult to express glycoproteins. These molecules are produced at high titers with authentic post-translational modifications in serum-free suspension culture. Their ability to generate human glycosylation patterns also makes CAP cells a valuable tool for vaccine production.

The CEVEC/Paragon project has succeeded in producing RSV in CAP cells that show a high-level of functional G-protein resulting in a very effective RSV vaccine with positive impact on attenuated-vaccine studies.

"Again CAP cells prove their enormous potential and significant advantages over many currently used production systems for vaccines," said Dr. Rainer Lichtenberger, COO of CEVEC. "Next to Cytomegalovirus, influenza, and others, this is another striking example that CAP cells can efficiently propagate disease relevant human viruses. We were very pleased to work with Paragon on this project and benefited from their experience in vaccine production. This collaboration was extremely pleasant and successful."

Marco Chacón, CEO of Paragon said, "This teamwork pays not only for CEVEC, but also for Paragon. With use of CAP cells we can offer our customers a unique production system to meet the challenges of their vaccine target. With this highly ambitious project we have again proven our expertise in this competitive business."

Related Links:

CEVEC Pharmaceuticals
Paragon Bioservices Inc.



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Pipette
Accumax Smart Series
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.