Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Blocking RON Shuts Down Breast Cancer Metastasis

By LabMedica International staff writers
Posted on 16 Jan 2014
A recent paper suggested that initiation of breast cancer metastasis did not depend on a specific genetic mutation but rather on improper regulation of molecular pathways that control activation and inactivation of certain critical genes.

Investigators at the University of Utah (Salt Lake City, USA) focused their research on the protein product of the RON gene, known as macrophage stimulating 1-receptor (MST1R), a member of the Met family of receptor tyrosine kinases. More...
The biological activity of RON was mediated by binding of its extracellular ligand, macrophage-stimulating protein (MSP), and the protein macrophage stimulating 1 (MST1). Binding of MSP activated RON and led to cellular growth, motility, and invasion. Recent studies have documented RON overexpression in a variety of human cancers including those of the breast, colon, liver, pancreas, and bladder, which often correlate with poor outcome. Moreover, clinical studies have shown that RON overexpression is associated with metastasis and worse patient outcomes.

In the current study, published in the January 2, 2014, online edition of the journal Cell Reports, the investigators showed that the RON/MSP pathway enhanced metastasis of breast cancer xenografts by reprogramming DNA methylation at specific target genes.

RON/MSP-initiated differential-DNA methylation was found to be the result of upregulation of the enzyme MBD4 (methyl-CpG binding domain protein 4), a thymine DNA glycosylase. MBD4 bound specifically to methylated DNA via an MBD domain at the N-terminus that functioned both in binding to methylated DNA and in protein interactions and a C-terminal mismatch-specific glycosylase domain that was involved in DNA repair.

Knockdown of MBD4 in RON/MSP-expressing breast cancer cells or inhibition of the glycosylase catalytic residue of MBD4 reversed the DNA methylation pattern on specific loci and blocked metastasis.

“Genetic mutations do not drive this mechanism,” said senior author Dr. Alana Welm, associate professor of oncological sciences at the University of Utah. “Instead, it is improper regulation of when genes turn on and off. No one has ever described a specific pathway driving this kind of reprogramming in metastasis, much less a way to therapeutically block it. Also, RON has not previously been known to be involved in reprogramming gene expression.”

“If there is an entire program in the tumor cell that is important for metastasis, blocking one small part of that program, for example, the action of a single gene will probably not be an effective strategy,” said Dr. Welm. “But if you could find a way to turn off the entire program, you are more likely to have the desired effect. We found that inhibiting RON turns off the entire metastasis program in these tumor cells.

Related Links:

University of Utah



Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Clinical Chemistry System
P780
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.