We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Inhaled Nanoparticles Bombard Lung Tumors with Anticancer Drugs and siRNAs

By LabMedica International staff writers
Posted on 06 Jun 2013
A novel nanoparticle delivery system optimized for inhalation combines anticancer drugs with small interfering RNAs (siRNA), which suppress the ability of cancer cells to develop drug resistance.

A major drawback to conventional chemotherapy for lung cancer is that the drugs tend to accumulate in the liver, kidney, and spleen, with only low concentrations of the drugs ever making it to the lungs. More...
To correct this situation, investigators at Oregon State University (Corvallis, USA) developed a new drug delivery system optimized for inhalation directly to the site of lung tumors.

The system described in the May 3, 2013, online edition of the Journal of Controlled Release comprised: (1) nanostructured lipid carriers (NLC); (2) an anticancer drug (doxorubicin or paclitaxel); (3) an siRNA targeted to MRP1 mRNA as a suppressor of pump drug resistance; (4) an siRNA targeted to Bcl-2 mRNA as a suppressor of nonpump cellular resistance; and (5) a modified synthetic analog of luteinizing hormone releasing hormone (LHRH) as a targeting moiety specific to the receptors that are overexpressed in the plasma membrane of lung cancer cells.

The NLCS system was tested in vitro using human lung cancer cells and in vivo utilizing a mouse model of human lung cancer. After inhalation, the NLCS effectively delivered its payload into lung cancer cells leaving healthy lung tissues intact. The inhalation approach significantly decreased the exposure of healthy organs to the chemotherapeutic drugs when compared with intravenous injection.

The NLCS showed enhanced antitumor activity when compared with intravenous treatment, as the amount of the drug delivered to the lungs by inhalation was 83% as compared to only 23% by injection.

“Lung cancer damage is usually not localized, which makes chemotherapy an important part of treatment,” said first author Dr. Oleh Taratula, assistant professor of pharmacy at Oregon State University. “However, the drugs used are toxic and can cause organ damage and severe side effects if given conventionally through intravenous administration. A drug delivery system that can be inhaled is a much more efficient approach, targeting just the cancer cells as much as possible. Other chemotherapeutic approaches only tend to suppress tumors, but this system appears to eliminate it.”

While patent protection is being sought to protect NLCS technology, considerably more testing will be required before it is ready for human clinical trials.


Related Links:
Oregon State University


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hematology Analyzer
Medonic M32B
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Immunology

view channel
Image: The simple blood marker can predict which lymphoma patients will benefit most from CAR T-cell therapy (Photo courtesy of Shutterstock)

Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy

CAR T-cell therapy has transformed treatment for patients with relapsed or treatment-resistant non-Hodgkin lymphoma, but many patients eventually relapse despite an initial response. Clinicians currently... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.