We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Inhaled Nanoparticles Bombard Lung Tumors with Anticancer Drugs and siRNAs

By LabMedica International staff writers
Posted on 06 Jun 2013
A novel nanoparticle delivery system optimized for inhalation combines anticancer drugs with small interfering RNAs (siRNA), which suppress the ability of cancer cells to develop drug resistance.

A major drawback to conventional chemotherapy for lung cancer is that the drugs tend to accumulate in the liver, kidney, and spleen, with only low concentrations of the drugs ever making it to the lungs. More...
To correct this situation, investigators at Oregon State University (Corvallis, USA) developed a new drug delivery system optimized for inhalation directly to the site of lung tumors.

The system described in the May 3, 2013, online edition of the Journal of Controlled Release comprised: (1) nanostructured lipid carriers (NLC); (2) an anticancer drug (doxorubicin or paclitaxel); (3) an siRNA targeted to MRP1 mRNA as a suppressor of pump drug resistance; (4) an siRNA targeted to Bcl-2 mRNA as a suppressor of nonpump cellular resistance; and (5) a modified synthetic analog of luteinizing hormone releasing hormone (LHRH) as a targeting moiety specific to the receptors that are overexpressed in the plasma membrane of lung cancer cells.

The NLCS system was tested in vitro using human lung cancer cells and in vivo utilizing a mouse model of human lung cancer. After inhalation, the NLCS effectively delivered its payload into lung cancer cells leaving healthy lung tissues intact. The inhalation approach significantly decreased the exposure of healthy organs to the chemotherapeutic drugs when compared with intravenous injection.

The NLCS showed enhanced antitumor activity when compared with intravenous treatment, as the amount of the drug delivered to the lungs by inhalation was 83% as compared to only 23% by injection.

“Lung cancer damage is usually not localized, which makes chemotherapy an important part of treatment,” said first author Dr. Oleh Taratula, assistant professor of pharmacy at Oregon State University. “However, the drugs used are toxic and can cause organ damage and severe side effects if given conventionally through intravenous administration. A drug delivery system that can be inhaled is a much more efficient approach, targeting just the cancer cells as much as possible. Other chemotherapeutic approaches only tend to suppress tumors, but this system appears to eliminate it.”

While patent protection is being sought to protect NLCS technology, considerably more testing will be required before it is ready for human clinical trials.


Related Links:
Oregon State University


New
Gold Member
Latex Test
SLE-Latex Test
Serological Pipet Controller
PIPETBOY GENIUS
New
Pan-Cancer Panel
TruSight Oncology 500
New
Silver Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: Brain biomarkers of Alzheimer\'s disease can be detected as early as middle age (Photo courtesy of University of Shutterstock)

Blood-Based Biomarkers Could Detect Alzheimer's as Early as Middle Age

As the global population ages, Alzheimer's disease and other dementing diseases are becoming more prevalent. The disease processes leading to Alzheimer's symptoms can begin years or even decades before... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: Micrograph showing the distribution of misfolded proteins in myeloma cells (Photo courtesy of Helmholtz Munich)

Novel Method Tracks Cancer Treatment in Cells Without Dyes or Labels

Multiple myeloma is a blood cancer that affects plasma cells in the bone marrow, leading to abnormal protein production, weakened immunity, and organ damage. Traditional methods for evaluating myeloma... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.