We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Full Genetic DNA Data Available in Minutes

By LabMedica International staff writers
Posted on 20 May 2013
A new device can extract human DNA from a swab of saliva, providing full analysis and genome sequencing data within minutes.

Developed by researchers at the University of Washington (UW, Seattle, WA, USA) and NanoFacture (Bellevue, WA, USA), the new device uses microscopic probes that dip into a fluid sample—saliva, sputum, or blood—and apply an electric field within the liquid that attracts particles to concentrate around the surface of the probe. More...
Larger particles hit the tip and swerve away, but DNA-sized molecules stick to the probe and are trapped on the surface via capillary action. It takes two or three minutes to separate and purify DNA using this technology.

The hand-held device can clean four separate human fluid samples at once, but the technology can be scaled up to prepare 96 samples at a time, which is standard for large-scale handling. Engineers at the University of Washington, which developed the technology, have also designed a pencil-sized device using the same probe technology that could be sent home with patients or distributed to those serving in the military overseas. Patients could swab their cheeks, collect a saliva sample, and process their DNA on the spot to send back to hospitals and labs for analysis.

“It’s very complex to extract DNA,” said lead researcher Jae-Hyun Chung, PhD, an associate professor of mechanical engineering at UW. “When you think of the current procedure, the equivalent is like collecting human hairs using a construction crane.”

Conventional methods use a centrifuge to spin and separate DNA molecules or strain them from a fluid sample with a micro-filter, but these processes take 20 to 30 minutes to complete and can require excessive toxic chemicals. The new device will give hospitals and research labs an easier way to separate DNA from human fluid samples, which will help with genome sequencing, disease diagnosis, and forensic investigations.

Related Links:

University of Washington
NanoFacture



New
Gold Member
Collection and Transport System
PurSafe Plus®
Portable Electronic Pipette
Mini 96
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: Private equity firms Blackstone and TPG have joined forces to acquire Hologic in a major healthcare deal (Photo courtesy of Hologic)

Hologic to be Acquired by Blackstone and TPG

Hologic (Marlborough, MA, USA) has entered into a definitive agreement to be acquired by funds managed by Blackstone (New York, NY, USA) and TPG (San Francisco, CA, USA) in a transaction valued at up to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.