We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New High-Sensitivity Breath Analyzer Enables Wide Range Multi-Biomarker Identification

By LabMedica International staff writers
Posted on 06 May 2013
Scientists and engineers have developed a gas-sensing technology that could enable multiple diseases and other conditions to be diagnosed and monitored using a single, highly sensitive breath analyzer.

Thousands of chemical compounds are exhaled with every breath. More...
The infrared emitter developed by Cambridge CMOS Sensors (CCMOSS; Cambridge, UK) is a low-power, low-cost device capable of identifying more than 35 biomarkers present in exhaled human breath in concentrations as low as 1 part per million. “Noninvasive breath analysis is an area of great potential for diagnosing and monitoring a wide range of medical conditions,” said Professor Florin Udrea of the Dept. of Engineering and CCMOSS’ CEO and cofounder; “Testing is easy and painless, and can be repeated as often as needed.”

A number of breath analysis tests are currently in the R&D phase, most of which use mass spectrometry or lasers to analyze the breath for specific compounds. However, these tests can detect only a small range of compounds, so different devices are needed to detect different conditions. The CCMOSS technology differs in that it uses broadband infrared radiation to make the detection of a wide range of biomarkers possible in a single device. The miniature heaters, or microhotplates, can be heated from room temperature to 700 °C in a fraction of a second, a temperature high enough to emit infrared radiation and allow the sensing material to react with gas molecules.

Many gas molecules absorb infrared. The amount of radiation absorbed allows the gas to be identified and its concentration calculated - the basic principle behind, for example, the roadside breathalyzer test. CCMOSS’s technology, however, is far more sensitive - using broadband infrared, the gas sensor can detect wavelengths between 2 and 14 micronmeters, corresponding to a wide range of biomarkers. In order to detect different wavelengths, a filter is placed over the detector so that only infrared radiation of a particular wavelength can get through.

The company, a spinout from the University of Cambridge Department of Engineering, has been supported by seed funding from Cambridge Enterprise, the University’s commercialization arm. The CCMOSS technology is being developed for use in noninvasive medical analysis and other applications such as consumer electronics, industrial security, and automotive applications. It currently has a range of products available and is actively involved in R&D projects for next generation micro- and nanosensors.

Related Links:

University of Cambridge
Cambridge CMOS Sensors (CCMOSS)



New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Rapid Test Reader
DIA5000
New
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: A diagnostic test can distinguish patients with head and neck squamous cell carcinoma who can be cured with surgery alone (Photo courtesy of University of Turku)

Novel Diagnostic Tool to Revolutionize Treatment Guidance of Head and Neck Cancer

Head and neck squamous cell carcinoma (HNSCC) is a solid tumor type commonly treated with surgery. However, there has been no clinically available method to determine which patients can be cured with surgery... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.