We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Mutant Heat Shock Protein Vaccine Prevents Vitiligo in Mouse Model

By LabMedica International staff writers
Posted on 11 Mar 2013
Print article
Image: Mice that have developed vitiligo (Photo courtesy of Loyola University Chicago Stritch School of Medicine).
Image: Mice that have developed vitiligo (Photo courtesy of Loyola University Chicago Stritch School of Medicine).
Image: Vitiligo mice after vaccination with mutant HSP70i protein (Photo courtesy of Loyola University Chicago Stritch School of Medicine).
Image: Vitiligo mice after vaccination with mutant HSP70i protein (Photo courtesy of Loyola University Chicago Stritch School of Medicine).
An experimental vaccine based on a genetically modified form of inducible heat shock protein 70 (HSP70i) prevented onset and partially cured vitiligo in a mouse model of the disease.

Vitiligo is skin disorder manifested by smooth, white spots on various parts of the body. Though melanocytes, the pigment-making cells of the skin, are structurally intact, they have lost the ability to synthesize the pigment. The reason for the condition is unclear although research suggests that it may arise from autoimmune, genetic, oxidative stress, neural, or viral causes. Individuals with vitiligo (about 1% of the adult population) are usually in good general health, but vitiligo presents a cosmetic problem that can be serious in dark-skinned individuals. Normal skin color rarely returns, and there is no known cure.

Investigators at Loyola University (Chicago, IL, USA) had shown previously that HSP70i played a vital role in the autoimmune response that causes vitiligo. In the current work they genetically modified one of HSP70i's 641 amino acids to create a mutant HSP70i molecule.

The investigators reported in the February 27, 2013, issue of the journal Science Translational Medicine that a vaccine based on the DNA encoding for mutant HSP70i applied months before spontaneous depigmentation prevented vitiligo in mice expressing a transgenic, melanocyte-reactive T-cell receptor. Furthermore, use of mutant HSP70i therapeutically in a different, rapidly depigmenting model after loss of differentiated melanocytes resulted in 76% recovery of pigmentation. Treatment also prevented relevant T-cells from populating mouse skin.

In addition to the dramatic results seen in the mouse model, “The mice look normal,” said senior author Dr. I. Caroline Le Poole, professor of pathology, microbiology, and immunology at Loyola University. Some of the beneficial effects of mutant HSP70i were seen in cultures grown from human vitiligo skin specimens.

Related Links:
Loyola University


Gold Supplier
Quantitative Immunoassay Analyzer
FIA8000
New
STI Test
Rheonix STI TriPlex Assay
New
Portable Molecular Workstation
iPonatic III
New
Rapid Procalcitonin (PCT) Test
AQT90 FLEX PCT Assay

Print article
IIR Middle East

Channels

Molecular Diagnostics

view channel
Image: A cost-effective approach enables early-cancer detection from cell-free DNA in blood samples (Photo courtesy of UCLA)

Single Blood Test Enables Early Detection of Multiple Cancer Types

Early detection remains key to successfully treating many cancers, and early detection via cell-free DNA (cfDNA) circulating in the bloodstream – the so-called “liquid biopsy” – has become a research focal point.... Read more

Technology

view channel
Image: OneDraw Blood Collection Device significantly reduces obstacles for drawing blood (Photo courtesy of Drawbridge Health)

Near Pain-Free Blood Collection Technology Enables High-Quality Testing

Blood tests help doctors diagnose diseases and conditions such as cancer, diabetes, anemia, and coronary heart disease, as well as evaluate organ functionality. They can also be used to identify disease... Read more

Industry

view channel
Image: The global infectious disease IVD market is expected to hit USD 57 billion by 2030 (Photo courtesy of Pexels)

Global Infectious Disease IVD Market Dominated by Molecular Diagnostics Technology

The global infectious disease in vitro diagnostics (IVD) market stood at USD 113.7 billion in 2021 and is expected to grow at a CAGR of -7.41% from 2022 to 2030 to hit around USD 56.89 billion by 2030,... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.