Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




European Collaborators Define Dermcidin's Mode of Action

By LabMedica International staff writers
Posted on 06 Mar 2013
A team of European molecular biologists have published the crystal structure and functional mechanism of the human antimicrobial peptide dermcidin.

Dermcidin (DCD) is a human antimicrobial peptide (AMP) that is constitutively expressed in sweat glands and secreted into sweat. More...
By postsecretory proteolytic processing in human sweat, the precursor protein gives rise to several short DCD peptides varying in length from 25 to 48 amino acids and with net charges between minus two and plus two. Several DCD peptides show antimicrobial activity against pathogenic microorganisms such as Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Candida albicans, Staphylococcus epidermidis, Pseudomonas putida, and methicillin-resistant S. aureus as well as rifampin- and isoniazid-resistant Mycobacterium tuberculosis. DCD-derived peptides are active under high-salt conditions and in a buffer resembling human sweat. These peptides have diverse and overlapping spectra of activity that are independent of the net peptide charge, and previous studies showed that DCD peptides interacted with the bacterial cell envelope and killed gram-negative bacteria without forming pores in membranes.

Investigators at the University of Edinburgh (United Kingdom), the Max Planck Institute for Biophysical Chemistry (Goettingen, Germany), the Max Planck Institute for Developmental Biology (Tübingen, Germany), and the University of Strasbourg (France) collaborated in the effort to define the mode of action of DCD at the molecular and atomic levels.

In the February 20, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) they presented the X-ray crystal structure as well as solid-state NMR spectroscopy, electrophysiology, and molecular dynamic simulations of this major human antimicrobial.

The results demonstrated that dermcidin formed an architecture of high-conductance transmembrane channels, composed of zinc-connected trimers of antiparallel helix pairs. Molecular dynamics simulations elucidated the unusual membrane permeation pathway for ions and showed adjustment of the pore to various membranes. Water and charged particles were able to flow uncontrollably across the membrane, eventually killing harmful microbes.

The authors predicted that their findings may form a foundation for the structure-based design of a new generation of peptide antibiotics.

Related Links:
University of Edinburgh
Max Planck Institute for Biophysical Chemistry
Max Planck Institute for Developmental Biology



Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Urine Chemistry Control
Dropper Urine Chemistry Control
Automatic CLIA Analyzer
Shine i9000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.