We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




European Collaborators Define Dermcidin's Mode of Action

By LabMedica International staff writers
Posted on 06 Mar 2013
A team of European molecular biologists have published the crystal structure and functional mechanism of the human antimicrobial peptide dermcidin.

Dermcidin (DCD) is a human antimicrobial peptide (AMP) that is constitutively expressed in sweat glands and secreted into sweat. More...
By postsecretory proteolytic processing in human sweat, the precursor protein gives rise to several short DCD peptides varying in length from 25 to 48 amino acids and with net charges between minus two and plus two. Several DCD peptides show antimicrobial activity against pathogenic microorganisms such as Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Candida albicans, Staphylococcus epidermidis, Pseudomonas putida, and methicillin-resistant S. aureus as well as rifampin- and isoniazid-resistant Mycobacterium tuberculosis. DCD-derived peptides are active under high-salt conditions and in a buffer resembling human sweat. These peptides have diverse and overlapping spectra of activity that are independent of the net peptide charge, and previous studies showed that DCD peptides interacted with the bacterial cell envelope and killed gram-negative bacteria without forming pores in membranes.

Investigators at the University of Edinburgh (United Kingdom), the Max Planck Institute for Biophysical Chemistry (Goettingen, Germany), the Max Planck Institute for Developmental Biology (Tübingen, Germany), and the University of Strasbourg (France) collaborated in the effort to define the mode of action of DCD at the molecular and atomic levels.

In the February 20, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) they presented the X-ray crystal structure as well as solid-state NMR spectroscopy, electrophysiology, and molecular dynamic simulations of this major human antimicrobial.

The results demonstrated that dermcidin formed an architecture of high-conductance transmembrane channels, composed of zinc-connected trimers of antiparallel helix pairs. Molecular dynamics simulations elucidated the unusual membrane permeation pathway for ions and showed adjustment of the pore to various membranes. Water and charged particles were able to flow uncontrollably across the membrane, eventually killing harmful microbes.

The authors predicted that their findings may form a foundation for the structure-based design of a new generation of peptide antibiotics.

Related Links:
University of Edinburgh
Max Planck Institute for Biophysical Chemistry
Max Planck Institute for Developmental Biology



New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Portable Electronic Pipette
Mini 96
New
8-Channel Pipette
SAPPHIRE 20–300 µL
New
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.